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Abstract

Let S be a finite Generalized Quadrangle (GQ) of order (s, t), s 6= 1 6= t,
and suppose L is a line of S. A symmetry about L is an automorphism of S
which fixes every line concurrent with L. A line L is an axis of symmetry if
there is a full group of size s of symmetries about L. A point of a generalized
quadrangle is a translation point if every line through it is an axis of symmetry.
If there is a point p in a GQ S = (P,B, I) for which there is a group G

of automorphisms of the GQ which fixes p linewise, and such that G acts
regularly on the points of P \ p⊥, then S is called an elation generalized
quadrangle, and instead of S, often the notations (S (p), G) or S(p) are used.
If G is abelian, then (S (p), G) is a translation generalized quadrangle (TGQ),
and a GQ is a TGQ S (p) if and only if p is a translation point, see [9].
We study the following two problems. (1) Suppose S is a GQ of order (s, t),
s 6= 1 6= t. How many distinct axes of symmetry through the same point p

are needed to conclude that every line through p is an axis of symmetry, and
hence that S(p) is a TGQ? (2) Given a TGQ (S (p), G), what is the minimum
number of distinct lines through p such that G is generated by the symmetries
about these lines?
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1 Introduction and Statement of the Main Results

In the monograph Finite Generalized Quadrangles, S. E. Payne and J. A. Thas,
Research Notes in Mathematics 110, Pitman it was proved that a GQ S is a TGQ
(S(p), G) with translation point p if and only if every line through p is an axis of
symmetry, that is, if p is a translation point, and then G is precisely the group
generated by all symmetries about the lines incident with p. In [25] we noted that
their proof was also valid for all lines through p minus one. This observation is one
of the main motivations of the present paper: what is — in general — the minimal
number of distinct axes of symmetry through a point p of a GQ S forcing S (p) to be
a TGQ?
In order to study the generalized quadrangles which have some distinct axes of sym-
metry through the point p, we will introduce Property (T) as follows. An ordered
flag (L, p) satisfies Property (T) with respect to L1, L2, L3, where L1, L2, L3 are three
distinct lines incident with p and distinct from L, if the following condition is satis-
fied: if (i, j, k) is a permutation of (1, 2, 3), if M ∼ L and MI\p, and if N ∼ Li and
NI\p with M 6∼ N , then the triads {M, N, Lj} and {M, N, Lk} are not both centric.
TGQ’s which satisfy Property (T) for some ordered flag always have order (s, s2)
for some s, and every TGQ of order (s, t) which has a subGQ of order s through
the translation point satisfies Property (T) for some ordered flag(s) containing the
translation point. Suppose that the GQ S satisfies Property (T) for the ordered flag
(L, p) w.r.t. the distinct lines L1, L2, L3, all incident with p. Moreover, suppose that
L, L1, L2, L3 are axes of symmetry. Then we will show that S (p) is a TGQ and that
the translation group G is generated by the symmetries about L, L1, L2, L3.
We will also study the following related problem: given a general TGQ S (p), what is
the minimal number of lines through p such that the translation group is generated by
the symmetries about these lines? We will show that there is a connection between
the minimal number of lines through a translation point of a TGQ such that the
translation group is generated by the symmetries about these lines, and the kernel
of the TGQ; in particular, if (S(p), G) is a TGQ of order (s, t), 1 6= s 6= t 6= 1, with
(s, t) = (qna, qn(a+1)) where a is odd and where GF(q) is the kernel of the TGQ, and
if k + 3 is the minimum number of distinct lines through p such that G is generated
by the symmetries about these lines, then we will show that k ≤ n.
Another main result reads as follows: let S be a thick GQ of order (s, t), t− s ≥ 1,
and let p be a point of S incident with more than t− s + 2 axes of symmetry. Then
S(p) is a translation generalized quadrangle.
We will also introduce Property (T’) as follows. An ordered flag (L, p) satisfies
Property (T’) with respect to L1, L2, L3, where L1, L2, L3 are distinct lines incident
with p and distinct from L, if the following condition holds: if M ∼ L and MI\p, and
if q and q′ are distinct arbitrary points on M which are not incident with L, then
there is a permutation (i, j, k) of (1, 2, 3) such that there are lines Mi, Mj, Mk, with
Mr ∼ Lr and r ∈ {i, j, k}, for which M ∈ {Mi, Mk, L}

⊥ and Mj ∈ {Mi, Mk, Lj}
⊥,

and such that qIMi and q′IMk.
It is a main goal of the present paper to state elementary combinatorial and group
theoretical conditions for a GQ S such that S arises from a flock, see J. A. Thas
[16], [18], [22], [20], [23] and also K. Thas [29]. We will show that a combination of
Property (T’) and Property (T) leads to Property (G) for TGQ’s S, and hence that
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it is possible to prove that such a TGQ S is related to a flock by the main theorem
of [22], see further. A classification result is eventually obtained.
Many other results will be proved, including a new divisibility condition for GQ’s
which have a point incident with at least three axes of symmetry, see Section 4.
Finally, in an appendix we will provide a new short proof of the following theorem
of Payne and Thas [9]: ‘If p is a point of the thick GQ S of order s which is incident
with three distinct axes of symmetry L1, L2, L3, then S(p) is a translation gener-
alized quadrangle for which the translation group is generated by all symmetries
about L1, L2, L3’.

2 Introducing Generalities and Notation

2.1 Some basics

A (finite) generalized quadrangle (GQ) of order (s, t) is an incidence structure S =
(P, B, I) in which P and B are disjoint (nonempty) sets of objects called points
and lines respectively, and for which I is a symmetric point-line incidence relation
satisfying the following axioms.

(GQ1) Each point is incident with t+1 lines (t ≥ 1) and two distinct points are
incident with at most one line.

(GQ2) Each line is incident with s + 1 points (s ≥ 1) and two distinct lines are
incident with at most one point.

(GQ3) If p is a point and L is a line not incident with p, then there is a unique
point-line pair (q, M) such that pIMIqIL.

Generalized quadrangles were introduced by J.Tits [30] in his celebrated work on
triality, in order to have a better understanding of the Chevalley groups of rank 2.
The main results, up to 1983, on finite generalized quadrangles are contained in the
monograph Finite Generalized Quadrangles by S. E. Payne and J. A. Thas (FGQ,
[9]). A survey of some ‘new’ developments on this subject in the period 1984-1992,
can be found in the article Recent developments in the theory of finite generalized
quadrangles [15]. We should also mention [21].
Let S = (P, B, I) be a (finite) generalized quadrangle of order (s, t), s 6= 1 6= t.
Then |P | = (s+1)(st+1) and |B| = (t+1)(st+1). Also, s ≤ t2 and, dually, t ≤ s2,
and s + t divides st(s + 1)(t + 1).
There is a point-line duality for GQ’s of order (s, t) for which in any definition or
theorem the words “point” and “line” are interchanged and also the parameters.
Normally, we assume without further notice that the dual of a given theorem or
definition has also been given. Also, sometimes a line will be identified with the set
of points incident with it without further notice.
A GQ is called thick if every point is incident with more than two lines and if every
line is incident with more than two points. A flag of a GQ is an incident point-line
pair. Let p and q be (not necessarily distinct) points of the GQ S; we write p ∼ q
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and say that p and q are collinear, provided that there is some line L such that
pILIq (so p 6∼ q means that p and q are not collinear). Dually, for L, M ∈ B, we
write L ∼ M or L 6∼ M according as L and M are concurrent or nonconcurrent. If
p 6= q ∼ p, the line incident with both is denoted by pq, and if L ∼ M 6= L, the
point which is incident with both is sometimes denoted by L ∩M .
For p ∈ P , put p⊥ = {q ∈ P ‖ q ∼ p} (note that p ∈ p⊥). For a pair of distinct
points {p, q}, the trace of {p, q} is defined as p⊥ ∩ q⊥, and we denote this set by
{p, q}⊥. Then |{p, q}⊥| = s + 1 or t + 1, according as p ∼ q or p 6∼ q. More
generally, if A ⊂ P , A⊥ is defined by A⊥ =

⋂
{p⊥ ‖ p ∈ A}. For p 6= q, the span

of the pair {p, q} is sp(p, q) = {p, q}⊥⊥ = {r ∈ P ‖ r ∈ s⊥ for all s ∈ {p, q}⊥}.
When p 6∼ q, then {p, q}⊥⊥ is also called the hyperbolic line defined by p and q, and
|{p, q}⊥⊥| = s + 1 or |{p, q}⊥⊥| ≤ t + 1 according as p ∼ q or p 6∼ q.
A triad of points (respectively lines) is a triple of pairwise noncollinear points (re-
spectively pairwise disjoint lines). Given a triad T , a center of T is just an element
of T⊥. If p ∼ q, p 6= q, or if p 6∼ q and |{p, q}⊥⊥| = t + 1, we say that the pair {p, q}
is regular. The point p is regular provided {p, q} is regular for every q ∈ P \ {p}.
Regularity for lines is defined dually. One easily proves that either s = 1 or t ≤ s if
S has a regular pair of noncollinear points.
If (p, L) is a nonincident point-line pair of a GQ, then by [p,L] we denote the unique
line of the GQ which is incident with p and concurrent with L. Finally, if S is a GQ
of order (s, t) with s = t, then S is also said to be of order s.

2.2 Elation generalized quadrangles and translation generalized quadran-

gles

A whorl about the point p of S is a collineation of S which fixes each line through
p. An elation about the point p is a whorl about p that fixes no point of P \ p⊥. By
definition, the identical permutation is an elation (about every point). If p is a point
of the GQ S, for which there exists a group of elations G about p which acts regu-
larly on the points of P \ p⊥, then S is said to be an elation generalized quadrangle
(EGQ) with elation point p and elation group (or base group) G, and we sometimes
write (S(p), G) for S. A symmetry about a point p of the GQ S (of order (s, t) with
s, t 6= 1) is an elation about p which fixes any point of p⊥ (in fact, a nontrivial whorl
about p which fixes every element of p⊥ automatically is a symmetry about p). A
group of symmetries about a point can have at most t elements, and if this bound is
reached, the point is called a center of symmetry. Dually, we define the notion axis
of symmetry. Any center (respectively axis) of symmetry is regular; see FGQ [9]. If
a GQ (S(p), G) is an EGQ with elation point p, and if any line incident with p is an
axis of symmetry, then we say that S is a translation generalized quadrangle (TGQ)
with translation point p and translation group (or base group) G. In such a case, G
is uniquely defined; G is generated by all symmetries about every line incident with
p, and G is the set of all elations about p, see FGQ [9].
TGQ’s were introduced by J. A. Thas in [13] for the case s = t and, in the general
case, by S. E. Payne and J. A. Thas in FGQ.



On Generalized Quadrangles with Some Concurrent Axes of Symmetry 221

Theorem 2.1 (FGQ, 8.1.3). Let S be a GQ of order (s, t), s 6= 1 6= t, and suppose
that L and M are distinct concurrent lines. If α is a symmetry about L and if β is
a symmetry about M , then αβ = βα.

Theorem 2.2 (FGQ, 8.3.1). Let S = (P, B, I) be a GQ of order (s, t), s, t ≥ 2.
Suppose each line through some point p is an axis of symmetry, and let G be the
group generated by the symmetries about the lines through p. Then G is elementary
abelian and (S(p), G) is a TGQ.

For the case s = t, we have the following result of [9], see also [25] and the
appendix for several shorter proofs.

Theorem 2.3 (FGQ, 11.3.5). Let S = (P, B, I) be a GQ of order s, with s 6= 1.
Suppose that there are at least three axes of symmetry through a point p, and let G
be the group generated by the symmetries about these lines. Then G is elementary
abelian and (S(p), G) is a TGQ.

Theorem 2.4 (FGQ, 8.2.3 and 8.5.2). Suppose (S (x), G) is an EGQ of order
(s, t), s 6= 1 6= t. Then (S(x), G) is a TGQ if and only if G is an (elementary)
abelian group. Also in such a case there is a prime p and there are natural numbers
n and k, where k is odd, such that either s = t = pn or s = pnk and t = pn(k+1). It
follows that G is a p-group.

Remark 2.5. We have classified the GQ’s with two distinct translation points in
[29].

2.3 4-Gonal families and some useful theorems

Suppose (S(p), G) is an EGQ of order (s, t), s, t 6= 1, with elation point p and elation
group G, and let q be a point of P \ p⊥. Let L0, L1, . . . , Lt be the lines incident with
p, and define ri and Mi by LiIriIMiIq, 0 ≤ i ≤ t. Put Ai = {θ ∈ G ‖ M θ

i = Mi},
A∗

i = {θ ∈ G ‖ rθ
i = ri}, and J = {Ai ‖ 0 ≤ i ≤ t}. Then |G| = s2t and J is a

set of t + 1 subgroups of G, each of order s. Also, for each i, A∗

i is a subgroup of G
of order st containing Ai as a subgroup. Moreover, the following two conditions are
satisfied:

(K1) AiAj ∩ Ak = 1 for distinct i, j and k;

(K2) A∗

i ∩ Aj = 1 for distinct i and j.

Conversely, if G is a group of order s2t, where s 6= 1 6= t, and J (respectively
J ∗) is a set of t+1 (respectively t+1) subgroups Ai (respectively A∗

i ) of G of order
s (respectively of order st), and if the conditions (K1) and (K2) are satisfied, then
the A∗

i are uniquely defined by the Ai, and (J ,J ∗) is said to be a 4-gonal family of
type (s, t) in G.
Let (J ,J ∗) be a 4-gonal family of type (s, t) in the group G of order s2t. For any
h ∈ G let us define θh by

gθh = gh, (Aig)θh = Aigh,
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(A∗

i g)θh = A∗

i gh, [Ai]
θh = [Ai], (∞)θh = (∞),

with g ∈ G, Ai ∈ J , A∗

i ∈ J ∗. Then θh is an automorphism of S(G,J ) which
fixes the point (∞) and all lines of type (b). If G′ = {θh ‖ h ∈ G}, then clearly
G′ ∼= G and G′ acts regularly on the points of type (1). Hence, a group of order
s2t admitting a 4-gonal family can be represented as a general elation group of a
suitable elation generalized quadrangle. This was first noted by Kantor [7].

The following two results (and their generalizations, see Theorem 2.8 and The-
orem 2.9) will appear to be very useful for the sequel.

Theorem 2.6 (X. Chen and D. Frohardt [3]). Let G be a group of order s2t
admitting a 4-gonal family (J ,J ∗) of type (s, t), s 6= 1 6= t. If there exist two
distinct members in J which are normal subgroups of G, then s and t are powers of
the same prime number p and G is an elementary abelian p-group.

Theorem 2.7 (D. Hachenberger [4]). Let G be a group of order s2t admitting a
4-gonal family (J ,J ∗) of type (s, t), s 6= 1 6= t. If G is a group of even order, and
if there exists a member of J which is a normal subgroup of G, then s and t are
powers of 2 and G is an elementary abelian 2-group.

In geometrical terms, Theorem 2.6 reads as follows: Let (S (x), G) be an EGQ of
order (s, t), s, t 6= 1, and suppose that there are at least two axes of symmetry L
and M through the elation point x, such that the full groups of symmetries about L
and M are completely contained in G. Then s and t are powers of the same prime
number p and G is an elementary abelian p-group. Hence, by Theorem 2.4, S (x) is
a translation generalized quadrangle. In geometrical terms, we have the following
for Theorem 2.7: Let (S(x), G) be an EGQ of order (s, t), with s, t 6= 1 and s or t
even, and suppose that there is at least one axis of symmetry L through the elation
point x, such that the full group of symmetries about L is completely contained in
G. Then s and t are powers of 2 and G is an elementary abelian 2-group. Thus,
S(x) is a translation generalized quadrangle.

In Theorem 2.6 and Theorem 2.7, the group theoretical descriptions have one
major restriction; they demand that the groups of symmetries about the lines must
be completely contained in the elation group. In [26], we improved these theorems
as follows.

Theorem 2.8 (K. Thas [26]). Let (S (x), G) be an EGQ of order (s, t), s, t 6= 1. If
there are two distinct regular lines through the point x, then s and t are powers of
the same prime number p, G is an elementary abelian p-group and hence S (x) is a
TGQ with translation group G.

Theorem 2.9 (K. Thas [26]). Let (S (x), G) be an EGQ of order (s, t), s, t 6= 1.
If there is a regular line through the point x, and G is a group of even order, then s
and t are powers of 2, G is an elementary abelian 2-group and hence S (x) is a TGQ
with translation group G.
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3 Generalized Quadrangles with Concurrent Axes of Symmetry

In Payne and Thas [9] it was proved that a GQ S is a TGQ (S (p), G) with translation
point p if and only if every line through p is an axis of symmetry, that is, if p is a
translation point, and G is precisely the group generated by all symmetries about
the lines incident with p. In [25] we noted that their proof was also valid for all lines
through p minus one. Here, we will study the following natural problem: what is —
in general — the minimal number of distinct axes of symmetry through a point p
of a GQ S such that S(p) is a TGQ? There are only such results known for (thick)
GQ’s of order s, and there, three axes of symmetries appears to be sufficient. In the
appendix, we will give a short new geometrical proof of this theorem without using
the coordinatization method for GQ’s — the only known proof of this theorem is
contained in Chapter 11 of [9], is rather long and complicated and uses this method.
For thick GQ’s of order (s, t) with s 6= t, the problem is a lot harder; we will show
that t−s+3 axes of symmetry are sufficient in the general case, see Section 7. In the
next paragraph we will introduce a purely combinatorial property, namely Property
(T), involving four concurrent axes of symmetry. Property (T) is closely related
to Property (G), see Section 6, and seems to be more general in the case of the
translation generalized quadrangles. Moreover, every known translation generalized
quadrangle of order (s, t), 1 6= s 6= t 6= 1, or its translation dual has Property (T).
TGQ’s which satisfy Property (T) for some ordered flag always have order (s, s2) for
some s, see MAIN THEOREM 1, and every TGQ of order (s, t) which has a subGQ
of order s through the translation point satisfies Property (T) for some ordered flags
containing the translation point, see Theorem 3.3. In § 3.2 we will also introduce
Property (T’), which, in combination with Property (T), leads to Property (G) for
TGQ’s, and hence to flock generalized quadrangles in the odd case by [22, 7.3.4], see
§ 6.3. In the even case, a slightly different statement will be proved.
We start with defining Property (T).

3.1 Property (T)

Suppose S is a GQ of order (s, t), s, t 6= 1, and let p be a point of the GQ. We
introduce Property (T) as follows.

Property (T). An ordered flag (L, p) satisfies Property (T) with respect to
L1, L2, L3, where L1, L2, L3 are three distinct lines incident with p and distinct from
L, if the following condition holds: if (i, j, k) is a permutation of (1, 2, 3), if M ∼ L
and MI\p, and if N ∼ Li and NI\p with M 6∼ N , then the triads {M, N, Lj} and
{M, N, Lk} are not both centric.
If the ordered flag (L, p) satisfies Property (T) with respect to L1, L2, L3, then we
also say that S satisfies Property (T) for the ordered flag (L, p) w.r.t. L1, L2, L3.

The following theorem will appear to be very useful for the sequel.

Theorem 3.1. Suppose S is a thick GQ of order (s, t), and let p be a point of S
incident with three distinct axes of symmetry. If G is the group generated by the
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symmetries about these axes, then G is a group of elations with center p of order s3.

Proof. Suppose that L1, L2, L3 are three distinct axes of symmetry incident
with p, and let Gi be the full group of symmetries about Li. With α1, α2 and β
contained in respectively G1, G2 and G3 (and none of these collineations trivial),
suppose that the following holds:

α1α2 = β.

If q is not collinear with p, then (q, qβ, qα1) are the points of a triangle, contra-
diction. This observation shows us that |G| = s3, and that each element of G is an
elation (because no two elements of G have the same action on a point of P \ p⊥),
and so G is a group of elations about p. �

MAIN THEOREM 1. Suppose S = (P, B, I) is a thick GQ of order (s, t), and
let p ∈ P be a point incident with four distinct axes of symmetry L1, L2, L3 and
L4. Moreover, suppose that Property (T) holds for the ordered flag (L4, p) w.r.t. the
lines L1, L2, L3. Then t = s2, every line through p is an axis of symmetry, and if
G is the group generated by all symmetries about L1, L2, L3, L4, then (S(p), G) is a
TGQ.

Proof. Suppose that Gi is the full group of symmetries about the line Li, i ∈
{1, 2, 3, 4}, and consider the group G generated by all symmetries about the lines
L1, L2, L3 and L4. We define G′ as the group generated by the symmetries about the
axes Lj with j = 1, 2, 3. A general element of G′ always can be written in the form
φkφjφi, with (i, j, k) = (1, 2, 3) and φi a symmetry about the line Li, see Theorem
2.1. Also, because of Theorem 3.1 G′ is an elation group with center p and of size
s3.
Suppose, for a non-trivial symmetry g ∈ G4 and an elation α = α1α2α3 of G′,
with αi ∈ Gi, that g and α have the same action on a point q of P \ p⊥. Then
qg = qα =: q′, and thus we have that q′ ∈ [q, L4]

1. It is clear that none of the
symmetries αi are identical (i = 1, 2, 3), otherwise we would have a composition of at
most three symmetries about distinct axes of symmetry with a common intersection
point which acts trivially on a point of P \p⊥, a contradiction. If we now consider the
triads of lines {[q, L4], [q

α1 , L2], L3} and {[q, L4], [q
α1 , L2], L1}, then the assumption

we just made implies that they are both centric, in contradiction with Property (T).
Thus we have proved that an element of G′ and an element of G4 can never have
the same action on a point of P \ p⊥. Therefore, we have that |G| = s4 and that
every element of G is an elation with center p. Since |P \ p⊥| = s2t and since t ≤ s2

by Theorem 1.2.3 of [9], there follows that t = s2. Also, there follows that G acts
regularly on the points of P \ p⊥, and hence that (S(p), G) is an EGQ with elation
point p. Since the lines Li are regular, the proof is complete by Theorem 2.8. �

The following property is well-known.

Observation 3.2. Let S be a thick GQ of order (s, s2), and suppose S ′ is a subquad-
rangle of S of order s. Then every line of S is either contained in S ′, or intersects
S ′ in exactly one point.

Proof. Easy counting. �

1Remark that q′ 6= q.
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Theorem 3.3. 1. Suppose S is a thick GQ of order (s, t), and let p be a point
incident with four distinct axes of symmetry, three of which are contained in a
proper subquadrangle S ′ of S of order (s, t′), t′ 6= 1, but not the fourth. Suppose
G is the group generated by all symmetries about these four axes. Then t = s2

and (S(p), G) is a TGQ. Also, S ′ is a TGQ.

2. Suppose S is a thick GQ of order (s, t), and let p be a point incident with four
distinct axes of symmetry L1, L2, L3, L three of which are contained in a proper
subquadrangle S ′ of S of order (s, t′), t′ 6= 1, but not the fourth, say L. Then
(L, p) satisfies Property (T) w.r.t. L1, L2, L3.

Proof. It is clear that an axis of symmetry of a GQ of order (s, t) also is an axis
of symmetry of a proper subGQ of order (s, t′) which contains this line. An axis of
symmetry of a GQ is a regular line, and since t′ 6= 1, there follows by [9, 2.2.2] that
s ≤ t′ and by the same theorem that t′ = s. Hence t = s2. By Theorem 2.3 there
holds that S ′ is a TGQ.
Let L1, L2, L3 be three distinct axes of symmetry through the point p which are
contained in S ′, and let L4 be an axis of symmetry through p which is not contained
in S ′. Suppose L ∼ L4 6= L is arbitrary, LI\p, and let L′ be an arbitrary line
of L⊥i \ {Li} not through p for a fixed i in {1, 2, 3}. Suppose that the triads of
lines {L, L′, Lj} and {L, L′, Lk} are both centric, with {j, k} = {1, 2, 3} \ {i}. First
suppose that L′ ∈ S ′. If M is a center of {L, L′, Lj}, then |M ∩ S ′| ≥ 2, and hence
M is a line of S ′. There follows that |L ∩ S ′| ≥ 2, and hence L is also a line of S ′.
This immediately leads to the fact that L4 is a line of S ′, contradiction. The same
holds for {L, L′, Lk}.
Next, suppose that L′ 6∈ S ′, that M ∈ {L, L′, Lj}

⊥ and N ∈ {L, L′, Lk}
⊥. The line

L intersects S ′ in one point q. Consider a symmetry θ about L4 which maps the
point q′ = L∩M onto q. Then the line M θ is contained in S ′, and hence also L

′θ. By
the first part of this proof, we get a contradiction. Hence, Property (T) is satisfied
for the ordered flag (L4, p) w.r.t. the lines L1, L2, L3, and the theorem follows from
MAIN THEOREM 1. �

3.2 Property (T’)

Suppose S is a GQ of order (s, t), s, t 6= 1, and let p be a point of the GQ.

Property (T’). An ordered flag (L, p) satisfies Property (T’) with respect
to the lines L1, L2, L3, where L1, L2, L3 are different lines incident with p and dis-
tinct from L, with the following condition: if M ∼ L and MI\p, and if q and q ′

are distinct arbitrary points on M which are not incident with L, then there is a
permutation (i, j, k) of (1, 2, 3), such that there are lines Mi, Mj, Mk, with Mr ∼ Lr

and r ∈ {i, j, k}, for which M ∈ {Mi, Mk, L}
⊥, Mj ∈ {Mi, Mk, Lj}

⊥ and such that
qIMi and q′IMk.
If the ordered flag (L, p) satisfies Property (T’) w.r.t. the lines L1, L2, L3, then we
also say that S satisfies Property (T’) for the ordered flag (L, p) w.r.t. L1, L2, L3.
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Theorem 3.4. Suppose that S = (P, B, I) is a thick GQ of order (s, t), and let p
be a point of P which is incident with four distinct axes of symmetry L, L1, L2, L3

such that Property (T’) is satisfied w.r.t. the lines L1, L2, L3. If GL, G1, G2, G3 are
the full groups of symmetries about these lines, then GL ⊆ 〈G1, G2, G3〉.

Proof. Put G = 〈G1, G2, G3〉. Suppose M ∼ L is arbitrary with MI\p, and
suppose q and q′ are distinct arbitrary points on M which are not incident with L.
Since Property (T’) is satisfied for the ordered flag (L, p) w.r.t. the lines L1, L2, L3,
there is a permutation (i, j, k) of (1, 2, 3), such that there are lines Mi, Mj, Mk, with
qIMi and q′IMk, for which M ∈ {Mi, Mk, L}

⊥ and Mj ∈ {Mi, Mk, Lj}
⊥, and such

that Mr ∼ Lr with r ∈ {i, j, k}. For convenience, put (i, j, k) = (1, 2, 3).
By the considerations above, the following collineations exist:

1. θ1 is the symmetry about L1 which sends q = M ∩M1 to M1 ∩M2;

2. θ2 is the symmetry about L2 which sends M1 ∩M2 to M2 ∩M3;

3. θ3 is the symmetry about L3 which maps M2 ∩M3 to q′ = M ∩M3.

Define the following collineation of S: θ := θ1θ2θ3. Then θ is an automorphism
of S which is contained in G, and hence θ is an elation about p by Theorem 3.1.
Also, θ fixes M and maps q onto q′. Now by K. Thas [26], there follows that θ is a
symmetry about L. It follows now easily that GL ⊆ G since q and q′ were arbitrary.�

Remark 3.5. By K. Thas [26] it is sufficient to ask that L is a regular line to
conclude it is an axis of symmetry.

Note. We emphasize the fact that Property (T) and Property (T’) are purely
combinatorial properties which are defined without the use of collineations.

4 A Divisibility Condition for GQ’s with Three Distinct Concur-

rent Axes of Symmetry

Theorem 4.1 (FGQ, 8.1.2). If a thick GQ S has a nonidentity symmetry θ about
some line, then st(1 + s) ≡ 0 mod s + t.

Theorem 4.2. Suppose S is a GQ of order (s, t), s 6= 1 6= t, and let L, M and N
be three different axes of symmetry incident with the same point p. Then s|t and
t
s

+ 1|(s + 1)t.

Proof. Define G′ as the group generated by the symmetries about the lines L,
M and N . By Theorem 3.1 we have that G′ is a group of elations with center p, and
the size of G′ is s3. If we consider the permutation group (P \ p⊥, G′), then there
follows that |G′| divides |P \ p⊥|, or that s3|s2t. So t is divisible by s. By Theorem
4.1, the theorem now follows. �
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5 Property (SUB) and Property (T)

Property (SUB). Suppose S is a thick GQ of order (s, t), and suppose M1, M2,
M3, M4 are four distinct lines of S, incident with the same point. Then these four
lines satisfy Property (SUB) if S does not have a subGQ of order s containing these
four lines.

Theorem 5.1. Suppose S is a GQ of order (s, t), s 6= 1 6= t, and let M1, M2, M3

and M4 be four distinct axes of symmetry through a point p such that there is a line
M ∈ {M1, . . . , M4} = M for which Property (T) is satisfied for the ordered flag
(M, p) w.r.t. the lines of M\M . Then these four lines also satisfy Property (SUB).

Proof. Suppose that the lines M1, M2, M3 and M4 are contained in a proper
subGQ S ′ of order s and suppose that M = M4 is such that (M, p) satisfies Property
(T) w.r.t. the lines M1, M2, M3. Consider lines L with LIM4 and L′ with L′IM1,
both contained in S ′. The lines Mi are axes of symmetry in the quadrangle S ′, so
they are regular. There follows now that each triad of lines in S ′ which contains one
of those axes, is centric. This leads to a contradiction. �

Theorem 5.2. Suppose that (S (p), G) is a TGQ of order (s, s2), s > 1, and suppose
that S has a subquadrangle S ′ of order s which contains the point p. Then there exist
four lines incident with p, such that G is the group generated by the symmetries about
these lines.

Proof. The quadrangle S ′ is a TGQ of order s with translation point p, and
so there exist three lines in S ′ incident with p, such that the translation group G′

of S ′ is generated by all symmetries about these three lines. Consider an axis of
symmetry L of S incident with p and not contained in S ′. This line intersects S ′

only in p. Take an arbitrary line M of S intersecting L and not incident with p.
This line is not contained in S ′, and thus it intersects S ′ in just one point. Since L
is an axis of symmetry, the group GL of symmetries about L acts transitively on the
points of M \ {L ∩M}; it follows now that every G′-orbit intersects M in exactly
one point. Also, there follows that G′′ = 〈G′, GL〉 has size s4. Since G′′ is a group
of elations with center p, the theorem is proved. �

Remark 5.3. It is clear that four is the minimum number of lines such that the
translation group of a TGQ of order (s, t), 1 < s 6= t, is generated by the symmetries
about these lines, see e.g. the proof of MAIN THEOREM 1.

Suppose that S is a thick TGQ of order (s, t) which satisfies property (T) for
some ordered flag (L, p) w.r.t. the lines L1, L2, L3. Then by MAIN THEOREM 1
we have that t = s2. Now suppose that C is the class of all thick TGQ’s S (p), with
p fixed, for which the following condition holds:

(C) If L1, L2, L3, L4 are different lines through p for which Property (SUB) is
satisfied, then there is a line L ∈ {L1, L2, L3, L4} = L such that S(p) satisfies
property (T) for the ordered flag (L, p) w.r.t. the lines of L \ {L}.
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Note that by Theorem 5.1, C is exactly the class of TGQ’s for which Property
(T) and Property (SUB) are ‘equivalent’ (with respect to certain lines incident with
p). If S(p) ∈ C is a TGQ of order (s, t) not satisfying Property (T) for every ordered
flag (L, p) (w.r.t. every three distinct lines through p and different from L), then
Property (SUB) does not hold, and so there is a subGQ of order s. It follows that
t = s or t = s2 by [9, 2.2.2]. Hence we have the following.

Observation 5.4. Every element of C has classical order, that is, is either of order
s or of order (s, s2).

Let S(p) ∈ C. Suppose that there are four distinct axes of symmetry incident with
the translation point p such that for one of these lines M Property (T) is satisfied
for the ordered flag (M, p) w.r.t. the other three lines. Then the translation group
is generated by all symmetries about these four lines by MAIN THEOREM 1. If
no ordered flag satisfies Property (T) w.r.t. every three distinct lines through p,
then neither Property (SUB) will be satisfied for every four lines, hence there is a
subquadrangle S ′ of S of order s. If S is of order s, then every three axes through
the translation point will determine the translation group. If t > s, then t = s2, and
by Theorem 5.2, there exist four axes such that the translation group is generated
by the symmetries about the four axes. We have the following observation.

Observation 5.5. If S ∈ C, then there always exist four axes which ‘determine’
the translation group, that is, the translation group is generated by the symmetries
about the four axes.

6 Property (T), Property (T’) and Property (G)

6.1 3-Regularity

Suppose S is a GQ of order (s, s2), s 6= 1. Then for any triad of points {p, q, r},
|{p, q, r}⊥| = s + 1, see 1.2.4 of [9]. Evidently |{p, q, r}⊥⊥| ≤ s + 1. We say that
{p, q, r} is 3-regular provided that |{p, q, r}⊥⊥| = s+1. A point p is 3-regular if each
triad of points containing p is 3-regular. Let S be a generalized quadrangle of order
(s, s2), s 6= 1. Let x1, y1 be distinct collinear points. We say that the pair {x1, y1}
has Property (G), or that S has Property (G) at {x1, y1}, if every triad {x1, x2, x3}
of points for which y1 ∈ {x1, x2, x3}

⊥ is 3-regular.

6.2 T(n,m,q)’s

Suppose H = PG(2n + m − 1, q) is the finite projective (2n + m − 1)-space over
GF(q), and let H be embedded in a PG(2n + m, q), say H ′. Now define a set
O = O(n, m, q) of subspaces as follows: O is a set of qm + 1 (n − 1)-dimensional
subspaces of H, say PG(n− 1, q)(i), every three of which generate a PG(3n− 1, q),
and such that the following condition is satisfied: for every i there is a subspace
PG(n+m−1, q)(i) of H of dimension n+m−1, which contains PG(n−1, q)(i) and
which is disjoint from any other PG(n−1, q)(j) if j 6= i. If O satisfies all these condi-
tions, then it is called a generalized ovoid, or an egg. The spaces PG(n+m−1, q)(i)
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are the tangent spaces of the egg, or just the tangents.
Generalized ovoids were introduced by J. A. Thas in [12].
Now let O(n, m, q) be an egg of H = PG(2n + m − 1, q), and define a point-line
incidence structure T (n, m, q) as follows.

• The POINTS are of three types.

1. A symbol (∞).

2. The subspaces PG(n + m, q) of H ′ which intersect H in a PG(n + m−
1, q)(i).

3. The points of H ′ \H.

• The LINES are of two types.

1. The elements of the egg O(n, m, q).

2. The subspaces PG(n, q) of PG(2n+m, q) which intersect H in an element
of the egg.

• INCIDENCE is defined as follows: the point (∞) is incident with all the
lines of type (1) and with no other lines; the points of type (2) are incident
with the unique line of type (1) contained in it and with all the lines of type (2)
which they contain (as subspaces), and finally, a point of type (3) is incident
with the lines of type (2) that contain it.

Then S. E. Payne and J. A. Thas, and J. A. Thas, prove in [13, 9] that T (n, m, q)
is a TGQ of order (qn, qm), and that, conversely, any TGQ can be seen in this way.
Hence, the study of translation generalized quadrangles is equivalent to the study of
the generalized ovoids.

If n 6= m, then by 8.7.2 of [9] the qm + 1 tangent spaces of O(n, m, q) form an
O∗(n, m, q) in the dual space of PG(2n + m − 1, q). So in addition to T (n, m, q)
there arises a TGQ T (O∗), also denoted T ∗(n, m, q), or T ∗(O). The TGQ T ∗(O) is
called the translation dual of the TGQ T (O).

Each TGQ S of order (s, s
a+1

a ), with translation point (∞), where a is odd and
s 6= 1, has a kernel K, which is a field with a multiplicative group isomorphic to
the group of all collineations of S fixing the point (∞), and any given point not
collinear with (∞), linewise. We have |K| ≤ s, see [9]. The field GF(q) is a subfield
of K if and only if S is of type T (n, m, q), see [9]. The TGQ S is isomorphic to a
T3(O) of Tits with O an ovoid of PG(3, s) if and only if |K| = s. It is well-known
that the TGQ T (O) and its translation dual T (O∗) have isomorphic kernels. An
egg O = O(n, m, q), n 6= m, is called good at an element π ∈ O if for every two
distinct elements π∗ and π′′ of O \ {π} the (3n − 1)-space ππ∗π′′ contains exactly
qn +1 elements of O (and is disjoint from the other elements). If the egg O contains
a good element, then the egg is subconsequently called good, and for a good egg
O(n, m, q) there holds that m = 2n. For convenience, we will sometimes say that



230 K. Thas

the TGQ T (O) is good at its element π if O is good at its element π. If a TGQ S (∞)

contains a good element π, then its translation dual satisfies Property (G) for the
corresponding flag ((∞)′, π′), with π′ the tangent space of O at π.

Theorem 6.1 (J. A. Thas [16]). If the TGQ S (∞) contains a good element π,
then its translation dual satisfies Property (G) for the corresponding flag ((∞)′, π′).

Theorem 6.2. Let S = T (n, m, q) be a TGQ for which there exist four distinct
elements πi, i = 1, 2, 3, 4, of O = O(n, m, q) which generate a (4n− 1)-space. Then
S is a GQ of order (qn, q2n) and S satisfies Property (T) for every ordered flag
(πr, (∞)), r ∈ {1, 2, 3, 4}, w.r.t. πi, πj, πk, where {i, j, k} = {1, 2, 3, 4} \ {r}.

Proof. Since 4n − 1 ≤ 2n + m − 1, there follows immediately that S is a GQ
of order (qn, q2n). Now, let Lk ∼ πk be lines of S such that V3 = {L1, L2, π3} and
V4 = {L1, L2, π4} are centric triads with L3 ∈ V⊥3 and L4 ∈ V⊥4 . Note that we
assume that L1 6∼ L2. It follows that the n-spaces L3 and L4 intersect the (2n + 1)-
dimensional space generated by the n-spaces L1 and L2 in a space of minimum
dimension 1, thus, if π is the space generated by the n-spaces Lk, 1 ≤ k ≤ 4, then π
has dimension at most 4n− 1. If we intersect π with PG(4n− 1, q), then we obtain
a space with maximal dimension 4n − 2 which contains the πk’s, a contradiction.
Hence, for every ordered flag (πr, (∞)), Property (T) is satisfied w.r.t. πi, πj, πk,
where {i, j, k} = {1, 2, 3, 4} \ {r}. �

The following theorem is a converse of Theorem 6.2.

Theorem 6.3. Suppose S(p) is the thick TGQ of order (qn, q2n) which corresponds
to the generalized ovoid O of PG(4n− 1, q). If LIp is a line such that Property (T)
is satisfied for the ordered flag (L, p) with respect to the lines L1, L2, L3 through p,
and if π, respectively πi, is the element of O which corresponds to L, respectively Li,
i = 1, 2, 3, then 〈π, π1, π2, π3〉 = PG(4n− 1, q).

Proof. Immediate from the proof of MAIN THEOREM 1 and the interpretation
in the projective model T (n, 2n, q). �

Theorem 6.4. A TGQ S(∞) = T (O) which is good at an element π ∈ O satisfies
Property (T) for the ordered flag (π, (∞)).

Proof. If O is good at some element π, then there are always four elements —
including π — of the corresponding egg, which generate the projective (4n−1)-space
PG(4n− 1, q). �

Thus, if S = T (O) is a TGQ for which O has a good element, then there are
always four lines such that the translation group is generated by the symmetries
about these lines.

Corollary 6.5. The T3(O) of Tits (see Chapter 3 of FGQ) satisfies Property (T).

Proof. O is good at every point by [9, 8.7.4]. �
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Lemma 6.6. Suppose (S(p), G) is a thick TGQ of order (s, t), t ≥ 3. Then S is
of order s if and only if there are lines L1Ip, L2Ip, L3Ip such that for every other
line LIp, with Gi the full group of symmetries about Li and GL the full group of
symmetries about L, the group 〈G1, G2, G3, GL〉 has size s3.

Proof. It is clear that a TGQ (S (p), G) of order s, s > 1, has the desired prop-
erty, since |G| = s3 and since by Theorem 2.3 G is generated by the symmetries
about three arbitrary distinct lines through p.
Let (S(p), G) be a TGQ, and suppose that the required conditions are satisfied. Sup-
pose that Gi is the full group of symmetries about the line Li, with i ∈ {1, 2, . . . , t+1}
and LiIp. If t = 3, then for any thick TGQ of order (s, t) we have s = 3 and so
|G| = s3. Hence, let t ≥ 4. Define the group Hj as Hj = 〈G1, G2, G3, . . . , Gj〉 with
j ∈ {4, 5, . . . , t + 1}. Then |H4| = s3. Considering that a group generated by the
symmetries about three concurrent axes of symmetry is a group of elations of order
s3 about their intersection point by Theorem 3.1, we have that H4 = 〈G1, G2, G3〉.
But H5 = 〈H4, G5〉, so H5 = H4, and thus also H4 = H5 = . . . = Ht+1. Since
Ht+1 = G there follows that |G| = s3, and hence S is of order s. �

The following theorem implies that Property (T’) is a characteristic property for
TGQ’s of order s.

Theorem 6.7. Suppose (S(p), G) is a thick TGQ of order (s, t), t ≥ 3. Then S is
of order s if and only if there is a line LIp such that S satisfies Property (T’) for
the ordered flag (L, p) w.r.t. every three distinct lines L1, L2, L3 through p which are
different from L.

Proof. Immediately by Lemma 6.6 and Theorem 3.4. �

Theorem 6.8. Suppose that S (p) = T (O) is a thick TGQ of order (s, t) with s 6=
1 6= t, such that there is a line LIp so that for every three distinct lines L1, L2, L3

through p and different from L, either Property (T) or Property (T’) is satisfied for
the ordered flag (L, p) w.r.t. L1, L2, L3, and suppose that there is at least one 3-tuple
(M, N, U) such that (L, p) satisfies Property (T) w.r.t. (M, N, U).
Then T (O) is good at its element L.

Proof. Since there is at least one 3-tuple (M, N, U) such that (L, p) satisfies
Property (T) w.r.t. (M, N, U), there follows by MAIN THEOREM 1 that t = s2.
By Theorem 6.3, the definitions of Property (T) and Property (T’), Lemma 6.6 and
Theorem 6.7, there follows that the generalized ovoid O satisfies the condition that
for every three distinct lines L1, L2, L3 through p and different from L, the projective
space generated by the four corresponding elements of O is either a PG(4n− 1, q)
or a PG(3n − 1, q). Thus every (3n − 1)-space which is generated by the element
π of O which corresponds to L and two other elements of O, has the property that
it either is disjoint with any other element of O or completely contains it. Suppose
that we denote the elements of O by π, π1, . . . , πq2n

, where π corresponds to L, and
fix for instance πi, i arbitrary. Then all the (3n− 1)-spaces of PG(4n− 1, q) which
contain π, πi and an element of O \ {π, πi} intersect two by two in ππi and cover
PG(4n−1, q). By the preceding remarks, every element of O\{π, πi} is completely
contained in one of these (3n − 1)-spaces, and is disjoint with any other of the
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(3n− 1)-spaces. Since the number of these spaces is qn + 1, there follows that every
of these (3n − 1)-spaces contains exactly qn + 1 elements of O. The theorem now
follows since i was arbitrary. �

Note. It is also possible to easily prove Theorem 6.8 with the use of 8.7.2 of
FGQ [9].

Theorem 6.9. Suppose that S (p) = T (O) is a thick TGQ of order (s, t) with s 6= t,
such that there is a line LIp so that for every three distinct lines L1, L2, L3 through p
and different from L, either Property (T) or Property (T’) is satisfied for the ordered
flag (L, p) w.r.t. L1, L2, L3. Then t = s2 and the translation dual S∗(p

′) = T (O∗)
satisfies Property (G) for the flag (p′, L′), where (p′, L′) corresponds to (p, L).

Proof. Immediate by Theorem 6.8 and Theorem 6.1. �

6.3 Flocks, Property (T) and Property (T’)

Let F be a flock of a quadratic cone K with vertex v of PG(3, q), that is, a partition
of K \ {v} into q disjoint irreducible conics. Then we have the following theorem.

Theorem 6.10 (J. A. Thas [14]). To any flock of the quadratic cone of PG(3, q)
corresponds a GQ of order (q2, q).

The following important theorem on flock GQ’s is due to Payne (for notations
not explicitly given here, see e.g. [22]).

Theorem 6.11 (S. E. Payne [10]). Any flock GQ satisfies Property (G) at its
point (∞).

Now we come to the main theorem of the masterful sequence of papers [16], [18],
[22], [20]; it is a converse of the previous theorem and the solution of a longstanding
conjecture.

Theorem 6.12 (J. A. Thas [22]). Let S = (P, B, I) be a GQ of order (q2, q),
q > 1, and assume that S satisfies Property (G) at the flag (x, L). If q is odd then
S is the dual of a flock GQ. If q is even and all ovoids Oz (see Section 5 of [22])
are elliptic quadrics, then we have the same conclusion.

Finally, we recall the following.

Theorem 6.13 (J. A. Thas [16]). Suppose S (p) = T (O) is a TGQ of order (s, s2),
s > 1, for which O is good at its element π. Then S contains at least s3+s2 subGQ’s
of order s (all containing the point p). For s odd these subGQ’s are isomorphic to
the classical GQ Q(4, s) (which arises from a nonsingular quadric in PG(4, s)).

Theorem 6.14 (J. A. Thas [24]). Let S(p) = T (O) be a TGQ of order (s, s2),
s even, such that O is good at its element πIp. If S contains at least one subGQ
of order s which is isomorphic to the GQ Q(4, s), then S is isomorphic to Q(5, s)
(which arises from a nonsingular elliptic quadric in PG(5, s)).
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There is a very nice corollary of Theorem 6.12 and Theorem 6.8.

Corollary 6.15. Suppose that S(p) = T (O) is a thick TGQ of order (s, t) with
s 6= t and s odd, such that there is a line LIp so that for every three distinct lines
L1, L2, L3 through p and different from L, either Property (T) or Property (T’) for
the ordered flag (L, p) is satisfied w.r.t. L1, L2, L3. Then t = s2 and the translation
dual S∗(p

′) = T (O∗) of S is the point-line dual of a flock GQ.

Proof. By Theorem 6.9 we have that t = s2, and that the translation dual S∗(p
′)

satisfies Property (G) at its flag (p′, L′) which corresponds with (p, L). By Theorem
6.12, the proof is complete. �

If the flock GQ S(F) is the classical GQ H(3, q2), then it is a TGQ with base
line L, L any line of S(F). The dual S(F)D of S(F) is isomorphic to T3(O), O an
elliptic quadric of PG(3, q). Hence the kernel K is the field GF(q). Also, S(F)D

is isomorphic to its translation dual (S(F)D)∗. Let K be the quadratic cone with
equation X0X1 = X2

2 of PG(3, q), q odd. Then the q planes πt with equation
tX0 −mtσX1 + X3 = 0, t ∈ GF(q), m a given non-square in GF(q) and σ a given
automorphism of GF(q), define a flock F of K; see [14]. All the planes πt contain
the exterior point (0, 0, 1, 0) of K. This flock is linear, that is, all the planes πt

contain a common line, if and only if σ = 1. Conversely, every nonlinear flock F
of K for which the planes of the q conics share a common point, is of the type just
described, see [14].
The corresponding GQ S(F) was first discovered by W. M. Kantor, and is therefore
called the Kantor (flock) generalized quadrangle. This quadrangle is a TGQ for some
baseline, and the following was shown by Payne in [10]2.

Theorem 6.16 (S. E. Payne [10]). Suppose a TGQ S = T (O) is the point-line
dual of a GQ S(F) which arises from a Kantor flock F . Then T (O) is isomorphic
to its translation dual T ∗(O).

The kernel K is the fixed field of σ, see [11].
The following recent and very interesting theorem classifies TGQ’s arising from
flocks in the odd case.

Theorem 6.17 (Blokhuis, Lavrauw and Ball [2]). Let T (O) be a TGQ of order
(qn, q2n), where GF(q) is the kernel, and suppose T (O) is the translation dual of the
point-line dual of a flock GQ S(F), with the additional condition that q ≥ 4n2−8n+2
and q is odd. Then T (O) is isomorphic to the point-line dual of a Kantor flock GQ.

We are now able to classify the thick TGQ’s for which there is a line LIp so
that for every three distinct lines L1, L2, L3 through p and different from L, either
Property (T) or Property (T’) is satisfied for the ordered flag (L, p) w.r.t. L1, L2, L3.

2Recently, Bader, Lunardon and Pinneri [1] proved that a TGQ which arises from a flock is
isomorphic to its translation dual if and only if it is the point-line dual of a Kantor flock GQ.
It should be noted however that their proof relies heavily on results of J. A. Thas and H. Van
Maldeghem [19] and J. A. Thas [18].
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Corollary 6.18. Suppose that S(p) is a thick TGQ of order (s, t), s 6= 1 6= t, such
that there is a line LIp so that for every three distinct lines L1, L2, L3 through p and
different from L, either Property (T) or Property (T’) is satisfied for the ordered
flag (L, p) w.r.t. L1, L2, L3. Then we have the following classification.

1. s = t and S is a TGQ with no further restrictions.

2. t = s2, s is an even prime power, and O is good at its element π which
corresponds to L, where S = T (O). Also, S has precisely s3 + s2 subGQ’s of
order s which contain the line L, and if one of these subquadrangles is classical,
i.e. isomorphic to the GQ Q(4, s), then S is classical, that is, isomorphic to
the GQ Q(5, s).

3. t = s2 and s = qn, q odd, where GF(q) is the kernel of the TGQ S (p), with
q ≥ 4n2 − 8n + 2, and S is the point-line dual of a flock GQ S(F) where F is
a Kantor flock.

4. t = s2 and s = qn, q odd, where GF(q) is the kernel of the TGQ S (p), with
q < 4n2− 8n+2, and S is the translation dual of the point-line dual of a flock
GQ S(F) for some flock F .

Proof. If for every three distinct lines L1, L2, L3 through p and different from
L, Property (T’) is always satisfied for the ordered flag (L, p) w.r.t. L1, L2, L3, then
by Lemma 6.7 there follows that S is a TGQ of order s with no further restric-
tions. Suppose this is not the case. Then there is a 3-tuple (M, N, U) of distinct
lines through p such that Property (T) is satisfied for the ordered flag (L, p) w.r.t.
M, N, U . Hence by MAIN THEOREM 1 there follows that t = s2, and if S = T (O),
then O is good at its element π which corresponds to L by Theorem 6.8. Suppose
that s is even. Then (2) follows from Theorem 6.13 and Theorem 6.14. Next suppose
that s is odd. By Theorem 6.12 T ∗(O) is the point-line dual of a flock GQ S(F).
Then (3) and (4) follow from Theorem 6.17. �
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7 The General Problem

We start this section with the following result.

Theorem 7.1 (FGQ, 9.4.2). Suppose that L0, L1, . . . , Lr, r ≥ 1, are r + 1 lines
incident with a certain point p in the GQ S of order (s, t), s 6= 1 6= t. Suppose that
O is the set of points different from p, which are on the lines of L0, L1, . . . , Lr, and
denote P \p⊥ by Ω. Suppose that G is a group of elations with center p, and suppose
G has the property that, if M is an arbitrary line which intersects O in one point
m, then G acts transitively on the points of Ω lying on M . If r > t/s, then G acts
transitively — and so also regularly — on the points of Ω.

�

Corollary 7.2. Suppose that (S(p), G) is a TGQ of order (s, t), s, t 6= 2, and suppose
k > t/s, k ∈ N. Then the translation group G is generated by the symmetries about
k + 1 arbitrary lines through the translation point p.

�

Corollary 7.3. Let S be a thick GQ of order (s, t) with the property that there is a
point p incident with at least s + 2 distinct axes of symmetry, and suppose that the
group G generated by all symmetries about some s + 2 axes of symmetry through p
is a group of elations. Then (S (p), G) is a TGQ.

Proof. From the inequality of Higman [9] there follows that t/s ≤ s, hence
s + 1 > t/s. So, the conditions of Theorem 7.1 for the group G and the s + 2 lines
LiIp are satisfied. Hence, the group G acts regularly on the points of P \ p⊥, and
(S(p), G) is an EGQ. There are at least two regular lines through the elation point
p, and by Theorem 2.8 the proof is complete. �

Theorem 7.4 (FGQ, 8.2.4). Let S = (P, B, I) be a GQ of order (s, t) with s ≤ t
and s > 1, and let p be a point for which {p, x}⊥⊥ = {p, x} for all x ∈ P \ p⊥. Let
G be a group of whorls about p.

1. If y ∼ p, y 6= p, and if θ is a nonidentity whorl about p and y, then all points
fixed by θ lie on py and all lines fixed by θ meet py.

2. If θ is a nonidentity whorl about p, then θ fixes at most one point of P \ p⊥.

3. If G is generated by elations about p, then G is a group of elations, i.e. the
set of elations about p is a group.

4. If G acts transitively on P \ p⊥ and |G| > s2t, then G is a Frobenius group
on P \ p⊥, so that the set of all elations about p is a normal subgroup of G of
order s2t acting regularly on P \ p⊥, i.e. S(p) is an EGQ with some normal
subgroup of G as elation group.

5. If G is transitive on P \p⊥ and G is generated by elations about p, then (S (p), G)
is an EGQ.
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Theorem 7.5. Suppose S is a GQ of order (s, t), t > s2/2 and s 6= 1, with x a
point incident with r + 1 axes of symmetry, r ≥ s + 1. If G is the group generated
by all symmetries about these r + 1 lines, then (S (x), G) is a TGQ.

Proof. By [9, 1.4.2] and Theorem 7.4 the conditions of Theorem 7.1 are satisfied,
which implies that (S(x), G) is an EGQ. Theorem 2.8 finishes the proof. �

Theorem 7.6. Suppose S = (S (p), G) is a thick TGQ of order (s, t), and let GF(q)
be the kernel of the TGQ. Next, suppose that L1, L2, . . . , Lt+1 are the lines incident
with p, and let Gi be the group of all symmetries about the line Li, i ∈ {1, 2, . . . , t +
1}. Define k as the minimum number such that G = 〈Gi1, Gi2 , . . . , Gi(3+k)

〉, with
{i1, i2, . . . , i(3+k)} ⊆ {1, 2, . . . , t + 1}. Then we have the following inequality:

k ≤ logq

t

s
.

Proof. Denote the groups 〈Gi1 , Gi2, Gi3〉 and 〈Gi1, Gi2 , Gi3, . . . , Gi(j+3)
〉 respec-

tively by G′

0 and G′

j, with j ∈ {1, 2, . . . , k}. By Theorem 3.1 we have that |G′

0| = s3.
Since k is defined as a minimum, we have the following strict chain of groups:

G′

0 < G′

1 < . . . < G′

k = G.

Now fix a point y ∈ P \p⊥, where S = (P, B, I). The groups G′

i are all groups of
elations about p, and hence for the G′

i-orbits G
′∗

i which contain y, there holds that
|G

′
∗

i | = |G′

i|, i = 0, 1, . . . , k, and that

G
′
∗

0 ⊂ G
′
∗

1 ⊂ . . . ⊂ G
′
∗

k = P \ p⊥.

The TGQ S is a T (O) for some egg O in PG(2n + m− 1, q) ⊂ PG(2n + m, q),
where GF(q) is the kernel of the TGQ. If we interpret the strict chain of orbits in
PG(2n + m− 1, q), then we obtain a strict chain of affine spaces over GF(q):

AG′

0 ⊂ AG′

1 ⊂ . . . ⊂ AG′

k = AG(2n + m, q),

and we have that |AG′

j| ≥ q|AG′

j−1| for every j ∈ {1, 2, . . . , k}, which implies
that |G| ≥ qks3. Since |G| = s2t, the theorem follows. �

This leads to one of our main theorems, which is a considerable improvement of
the best known (general) result.

MAIN THEOREM 2. Let (S(p), G) be a TGQ of order (s, t), 1 6= s 6= t 6= 1, with
(s, t) = (qna, qn(a+1)), where GF(q) is the kernel of the TGQ and where a is odd. If
k +3 is the minimum number of distinct lines through p such that G is generated by
the symmetries about these lines, then

k ≤ n.

�



On Generalized Quadrangles with Some Concurrent Axes of Symmetry 237

Remark 7.7 (An alternative approach for T3(O)). Suppose (S(p), G) is a TGQ
of order (s, t), s 6= 1 6= t. Then the kernel K of the TGQ is isomorphic to GF(s) if
and only if S is a T3(O) with O some ovoid of PG(3, s), and t = s2, see [9, 8.7.4].
There immediately follows from MAIN THEOREM 2 that there are four distinct
lines incident with p such that G is generated by all symmetries about these four
lines. Hence, the knowledge of the size of the kernel is already sufficient to com-
pletely solve problem (2) for the T3(O) of Tits.

The following is an analogue of MAIN THEOREM 2 in a more general context.

Theorem 7.8. Suppose S is a thick GQ of order (s, t), and let x be a point of S
incident with r+1 axes of symmetry L0, . . . , Lr. Suppose G is the group generated by
all symmetries about the lines Li. We denote the full group of symmetries about Li

by Gi, 0 ≤ i ≤ r. Define k as the smallest natural number such that |G| ≤ s3k, and
suppose r ≥ 2. Then there are at least m = r − 2− logp k groups of G0, G1, . . . , Gr

which are abelian, and G is generated by the symmetries about at most 3 + logp k
elements of {L0, L1, . . . , Lr}. Here p is the smallest prime number dividing s.

Proof. By Theorem 3.1 we have that s3 divides |G|, and hence |G| = s3k.
Suppose r + 1 − m is the minimal number of groups of {G0, G1, . . . , Gr} which
generate G. Then we have by the proof of Theorem 4.2 that

s3pr−2−m ≤ |G| = s3k,

and hence

pr−2−m ≤ k =⇒ m ≥ r − 2− logp k.

Next, suppose that L0, L1, . . . , Lr are axes of symmetry through p, indexed in
such a way that G = 〈Gj ‖ m ≤ j ≤ r〉 (recall that G is generated by all symmetries
about r + 1 − m axes of symmetry incident with x), and define Hi as Hi = 〈Gj ‖
j 6= i, 0 ≤ j ≤ r〉, i ∈ {0, 1, . . . , r}. Then we have that G = HiGi = GiHi for every
i, i ∈ {0, 1, . . . , r}, since symmetries about different concurrent axes commute, and
if j ∈ {0, 1, . . . , m − 1}, it follows that G = HjGj = Hj (Gj ≤ Hj = G). Also,
since symmetries about different concurrent axes commute, there follows that every
group Gj, with j ∈ {0, 1, . . . , m − 1}, is abelian, see the proof of [9, 8.3.1]. This
proves the result. �

The next (related) theorem generalizes the fact that if S is a (thick) TGQ of
order (s, t), then s and t are powers of the same prime.

Theorem 7.9. Suppose S is a GQ of order (s, t), t > s2/2 and s 6= 1, and let x be
a point which is incident with r + 1 axes of symmetry L0, L1, . . . , Lr, r ≥ 2, such
that the following condition is satisfied.

• If Gi is the full group of symmetries about Li, i = 0, 1, . . . , r, and Hi = 〈Gj ‖
j 6= i, 0 ≤ j ≤ r〉, then Gi 6⊆ Hi.

If r + 1 ≥ 3 + logp
t
s
, then r + 1 = 3 + logp

t
s

and (S(x), G) is a TGQ. Here p is
the smallest prime number dividing s, and G = 〈G0, G1, . . . , Gr〉. Also, t

s
is a power

of p, and s and t are powers of p if t = s2.
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Proof. From Theorem 7.8 and Theorem 4.2, there follows that |G| ≥ pr−2s3.
Since r + 1 ≥ 3 + logp

t
s
, there follows that |G| ≥ s2t. Since t > s2/2, it follows

by Theorem 7.4 that G is a group of elations with center x, hence |G| = s2t and
r = 2 + logp

t
s
. The equality implies that t

s
is a power of p, and in particular, if

t = s2, there holds that s is a power of p, and then also t . Since |G| = s2t, there
also follows that (S(x), G) is an EGQ, and by Theorem 2.8 and the fact that r ≥ 2,
we also know that S(x) is a TGQ. �

Theorem 7.10 (FGQ, 8.1.1). Let θ be a nonidentity whorl about the point p of
the GQ S = (P, B, I) of order (s, t), s 6= 1 6= t. Then one of the following must hold
for the fixed elements structure Sθ = (Pθ, Bθ, Iθ):

1. yθ 6= y for each y ∈ P \ p⊥.

2. There is a point y, y 6∼ p, for which yθ = y. Put V = {p, y}⊥ and U = V ⊥.
Then V ∪ {p, y} ⊆ Pθ ⊆ V ∪ U , and L ∈ Bθ if and only if L joins a point of
V with a point of U ∩ Pθ.

3. Sθ is a subGQ of order (s′, t), where 2 ≤ s′ ≤ s/t ≤ t, and hence t < s.

Theorem 7.11. Suppose that S = (P, B, I) is a thick GQ, with x a point which
is incident with at least r + 1 axes of symmetry, L0, . . . , Lr, r ≥ 3. Let Gi be the
full group of symmetries about Li. Define G = 〈Gi ‖ i = 0, 1, . . . , r〉, and put
Hi = 〈Gj ‖ j 6= i, i, j ∈ {0, 1, . . . , r}〉. Suppose that G∗ is an arbitrary G-orbit in
P \ x⊥. If ∀i = 0, 1, . . . , r there holds that Hi acts transitively on the points of G∗,
then G acts regularly on the points of G∗, G is abelian and G is a group of elations
about x. The same properties hold immediately for every G-orbit in P \ x⊥.

Proof. Suppose |G∗| = m; then m ≥ s3 by Theorem 3.1, and it follows that
|G| = mk, with k = |Gy| for an arbitrary point y ∈ G∗. In the following y will be
fixed, as well as i ∈ {0, 1, . . . , r}. There holds that |Hi| = mk′ with k′ = |(Hi)y|,
and clearly that k′|k, say k = k′n.

So we have that:

|G| = mk = |GiHi| =
|Gi| × |Hi|

|Gi ∩Hi|
=

smk′

|Gi ∩Hi|
. (1)

There follows that s = n|Gi ∩ Hi|, and thus that n|s. Suppose now that p is
a prime which divides n; then there exists a θ ∈ Gy of order p. Suppose M is a
line through y meeting Li in xi. The orbits of 〈θ〉 on M (seen as a point set) are
cycles of length p, and since p is a divisor of n and of s, we have that there are at
least p + 1 points incident with M which are fixed by θ. By Theorem 7.4 θ has to
be the identity, since s ≤ t and since every axis of symmetry is regular. It follows
that n = 1, and that Hi = G. Every two symmetries about distinct concurrent lines
commute, and since we proved that GjHj = Hj = G, with i = 0, 1, . . . , r, Gj is
commutative for every j. Hence G is abelian, and since G acts transitively on G∗,
G also acts regularly on G∗, see e.g. [5]. Finally suppose that H∗ is an arbitrary
G-orbit in P \ x⊥. Since G is abelian and since G acts transitively on this orbit, we
can again conclude that G acts regularly on H∗. This proves the assertion. �
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Theorem 7.12. Suppose S = (P, B, I) is a generalized quadrangle with parameters
(s, t), s 6= 1 6= t, and that p is a point which is incident with at least three axes of sym-
metry. Also, suppose that G is the group generated by the symmetries about every
axis of symmetry through p. Suppose G∗ is an arbitrary G-orbit of the permutation
group (P \ p⊥, G). Now define the incidence structure S ′(G∗) = S ′ = (P ′, B′, I ′) as
follows. The elements of P ′ are of three types: (1) the point p; (2) the points of G∗;
(3) any point which is incident with an axis of symmetry through p. We have two
types of lines: (a) the axes of symmetry through p; (b) the lines of S which intersect
a line of the first type and contain at least one point of G∗. The incidence relation
I ′ ⊆ I is the restriction of I to (P ′ × B′) ∪ (B′ × P ′).
Then we have the following properties.

1. There are constants l and k such that any point of the first two types is incident
with l + 1 lines of S ′, and every point of the last type is incident with k + 1
lines;

2. A line of S ′ contains s + 1 points of S ′;

3. |G∗| = s2k;

4. k is divisible by s, and in particular we have that s ≤ k. Also, l ≤ k;

5. The number of points of S ′ is ks2 + (l + 1)s + 1, and the number of lines of S ′

is (l + 1)(sk + 1).

Proof.

(i) Let L be an arbitrary line through p, and consider an arbitrary point qIL,
q 6= p. Suppose that q is incident with k+1 lines of S ′. Since G acts transitively
on the points of L\{p} (p is incident with at least one axis of symmetry), and
since G∗ is fixed by G, we can conclude that every point of L \ {p} is incident
with k + 1 lines of S ′. Next consider an arbitrary line L′ such that L′ 6= L,
and an arbitrary point q′IL′, q′ 6= p (so q′ is a point of S ′). If k′ + 1 is the
number of lines of S ′ incident with q′, then we can easily see that k′ ≥ k (the
k + 1 lines through q′ of S, meeting the k + 1 lines through q of S ′ are also
lines of S ′), and conversely we have that k ≥ k′. It follows that there exists a
k ∈ N such that each point of S ′ of type (3) is incident with k + 1 lines of S ′.
Suppose that p is incident with l + 1 lines of S ′, and consider a point p′ of G∗.
From the definition of S ′, we can immediately see that p′ is also incident with
l + 1 lines of S ′. This proves part (1) of the theorem.

(ii) Immediately by the definition of S ′.

(iii) Consider an arbitrary line L ∈ B ′ of type (a); then each point of G∗ is
incident with a unique line of S ′ (of type (b)) which is concurrent with L.
Then the statement follows easily by part (1).

(iv) If G′ is a group generated by all symmetries about three distinct axes of
symmetry through a point p in a GQ S, then |G′| = s3 by Theorem 3.1, and
G′ is a group of elations with center p. Thus s3 is a divisor of |G∗| = s2k. Now
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suppose that M is a fixed line of S ′ of type (b). Counting the number of pairs
(q, M), with qIM a point of G∗ lying on a line of S ′ not through p, we obtain
that

s + sl(s− 1) + (k − 1)s ≤ |G∗| = s2k,

or that

sl − l ≤ sk − k.

Hence part (4) of the theorem follows.

(v) The numbers of points and lines of S ′ follow immediately by (1) and (2). �

Remark 7.13. Theorem 7.12 is taken from K. Thas [25], and was one of the main
motivations for introducing semi quadrangles, see [28].

We are now ready to state the following (main) result.

MAIN THEOREM 3. Suppose S is a GQ of order (s, t), t ≥ s 6= 1, and let p
be a point of S which is incident with more than t− s + 2 axes of symmetry. Then
S(p) is a translation quadrangle. If s 6= t, and G is the group generated by t− s + 2
arbitrary axes of symmetry through p, then G is the translation group.

Proof. If s = t, then the theorem follows from Theorem 2.3, so suppose that
s 6= t. Consider r + 1 axes of symmetry through p, with r = t− s + 1, and suppose
that G∗ is an arbitrary G-orbit in P \ p⊥, with G as above. Since p is incident with
at least three axes of symmetry, we have by Theorem 4.2 that t is divisible by s, and
since r ≥ 2, we can use Theorem 7.12 (in the following we use the same notations
as in Theorem 7.12). If S ′ is the incidence structure associated to G∗ as defined in
Theorem 7.12, then there follows that k ≥ t − s + 1 since k ≥ l ≥ r. However, by
Theorem 7.12 it follows that s|k, and we already remarked that s|t. Since k ≤ t,
there holds that k = t, thus |G∗| = s2k = s2t, so G acts transitively on P \ p⊥.
Since the t− s + 2 axes were arbitrary chosen, the conditions of Theorem 7.11 hold.
Hence we can conclude that the group G acts regularly on P \ p⊥, and the theorem
follows by Theorem 2.8. �

Remark 7.14. Regarding GQ’s which have nonconcurrent axes of symmetry (the
so-called span-symmetric generalized quadrangles), we refer to [27] and [29].
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Appendix: a New Short Proof of a Theorem of Payne and Thas

Theorem 7.15. Suppose S = (P, B, I) is a thick GQ of order s, and let p be a
point of P incident with three distinct axes of symmetry L1, L2, L3. Then every line
through p is an axis of symmetry, and so S is a TGQ.

The proof of this theorem, mentioned in Chapter 11 of FGQ [9] is not easy, and
uses a coordinatization method for GQ’s of order s and the theory of planar ternary
rings. We will give a new geometrical proof without the use of coordinatization.

In the following we define G as the group generated by all symmetries about
L1, L2 and L3. Furthermore, Gi will be the full group of symmetries about the axis
Li.

Proof of the theorem. By Theorem 3.1 there follows that G is a group of elations
with center p of order s3, thus, (S(p), G) is an EGQ since S is of order s. Since an
axis of symmetry is a regular line, the theorem now follows from Theorem 2.8. �
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