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Abstract—We investigate the properties of the coefficients of modified r-Adams methods for
the integration of ODEs. The derivation of these methods is, in contrast with the classical Adams
methods, not based on a polynomial interpolation theory, but rather starts from a mixed interpolation
theory in which a parameter x is involved. It will be shown that the coefficients of the modified
methods possess properties which make these methods very attractive. Further, we will discuss the
role of so-called over-implicit modified r-Adams schemes in the construction of more general linear
multistep methods. Our second goal is to show that the modified Adams-Bashforth/Adams-Moulton
methods are very well suited to be implemented as a predictor-corrector pair. In particular, we will
discuss the choice of the interpolation parameter when such a method is applied to general systems
of equations. Numerical tests are performed to support the theory.
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1. INTRODUCTION

Many methods have been developed in the last several decades for the step-by-step integration
of ordinary differential equations. Some of them take advantage of special properties of the ODE
solution that may be known in advance. Several exponential fitting methods have thus been
developed for problems where the solution has an exponential or an oscillatory character. Early
work in this area has been carried out by Gautschi [1], Stiefel and Bettis [2], Bettis [3], and
Lyche [4]. In the seventies and the eighties, new methods have been presented by Raptis and
Allison [5], Ixaru and Rizea [6], van der Houwen en Sommeijer (7], Neta and Ford [8], Neta [9],
Raptis and Cash [10]. More recent work is due to Panovsky and Richardson [11], Coleman [12],
Coleman and Booth [13], Simos [14], and some of the present authors [15,16] to name a few.

In these earlier papers [15,16], the construction of new integration methods of Adams-type for
first-order differential equations of the form

v = f(z,y),  yla)=n, (1.1)

based on a mixed-type interpolation technique [17,18] has been discussed. The mixed interpola-
tion functions are a combination of polynomials up to degree ¢—2, and trigonometric polynomials
of first order with respect to a frequency x (i.e., a linear combination of the functions sin xz and
cos kz; note that in the case that x is a purely imaginary value, the last two functions are re-
placed by e** and e *%). The error being known at interpolation level, the order of the local
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truncation error of the corresponding difference method can be raised by a suitable choice of the
interpolation parameter x.

In [17,18], it was also shown that in the limit for x going to 0, this mixed-type interpolation
theory results in polynomial interpolation through the same set of points. Consequently, the
newly developed integration schemes reduce to the known ones if « tends to zero.

Since the Adams-Bashforth and Adams-Moulton schemes have attractive properties which
assure that they can be implemented very efficiently as a predictor-corrector (PC) pair, these
methods, which we will call ABM schemes, are used worldwide. The purpose of this paper is to
show that our modified ABM schemes, based on mixed interpolation, satisfy analogous properties
and can be implemented nearly as cheaply as the classical schemes.

Secondly, the so-called r-Adams methods are known to be the building blocks to construct
families of general linear differential methods. Before examining the implementation of PC-pairs
of ABM-type, we will first examine the construction of modified general linear differential methods
based on modified r-Adams methods.

In the next section, we start with the introduction of the necessary definitions and notations
and the derivation of some general properties.

2. GENERAL PROPERTIES

In [15,16], it was shown that the modified schemes of Adams type can be obtained by replacing
f(z,y(z)) in the identity

T4l
Yan) ~vle) = [ flay(e) do (21)
by the mixed interpolation function If(x) = I}(Zn4r + sh) = I(s) through the k + 1 equidistant
points T4, —1h, ¢ = 0(1)}k. For 7 = 0 and r = 1, one thus obtains the modified Adams-Bashforth
and Adams-Moulton formulae. For the time being, r can be any integer.

In [17,18], it was shown that

Fr : if 7S\
9 =31 (7)o (22)
- K2¢k((s + k)h)vk-lfn+7‘ - K'2¢k+1((s + k)h)kan+ra

under the condition that VI € Z :  # Ix with § := kh and where the functions ¢, (z) are defined
in [17]. Moreover, it has been shown [18] that the error related to (2.2) can be written, if kxh < 7,
as

Bi(f,) = B 8u(z = 2neri) [R2FED (6 () + 15D ()] (2:3)

where Tpqr—k < € < Tnyr. Since the first part in the right-hand side of (2.2) corresponds to the
polynomial interpolant through the same set of points, one can already deduce that by setting «
equal to 0 in a modified formula, the known classical analogue will be retrieved.

With the general properties concerning the interpolation theory being introduced, we can
proceed with the construction of modified Adams methods. Defining

o = (- [ 1 ( - ) ds,
ol = /0 " gul(s + D) ds,

one obtains, after the introduction of (2.2) in (2.1), that y(z,+.1) is approximated by v, through

k
Yntl —Yn = hZﬁ:’kvifn+ra (2~4)

i=0
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where .
B =of, i=0(1)k -2,
oE = of_y — kAT, (2.5)

rk _ T 2 _—r+k
k —ak—,‘i (pk+1 .

The constants af are the classical ones which can, e.g., be calculated by means of generating
functions (see [19-21]).

As can be seen from (2.5), only the last two coefficients ﬁ,:’fl and ﬁ;’k are modified with
respect to the polynomial case. This property was already observed by Bettis [3], by means of a
completely different theory.

There is also a second interesting remark that can be made about (2.5): if one wishes to
find out the classical relation that corresponds to any modified equation, it suffices to set s {or
equivalently 8) equal to 0 and to replace any ﬁ;’k—value by the corresponding aj-value.

We now define

P2+1(E) = EHH1T - Ek_rv k>r20, (2.6)
and
k .
ori(E) =Y BIFVER, k>0, (2.7)
1=0

where E is the shift operator defined by Ef(z) = f(z+h) such that V = 1 — E~1. After shifting,
(2.4) results in the modified scheme

Pre+1(E)yn = hop 1 (E) fa, k>r2>0. (2.8)

To obtain an expression for the truncation error associated with the scheme (2.8), one can
proceed as follows. Since ¢ () belongs to the space {sinsz, coskz, 1, z, ..., z¥"1}, which is a
k + 2 dimensional Chebyshev space provided that 0 < (k + 1)kh < 7, ¢r(z) has at most &k + 1
distinct zeros in [0, (k + 1)h] (see, e.g., [22, Theorem 1.14]). Since ¢x(jh) = 0, j = 0(1)k, by
construction, ¢,(z) has a constant sign in each interval Jjh, (j + 1)k[, 7 = 0(1)k. On account of
the mean value theorem, the error of the scheme (2.4) can, for k > r > 0, be written as

Tn41
Y(Trt1) = Ynt1 =/ E[(f,z)dz
x

n

1-r

= W [ Dmym) + D mym)] [ el +pmyas (29
= KR+ k28 () + 4+ ()]

with Tpyr—k <7 < max(Tpi1, Tpir)-
This expression can be written in a more appropriate way, using the relationships given in [17],
that exist between the ¢, (x) functions. Indeed, a first relationship is

¢n(T + h) = ¢n(2) + Pn-1(z), n 21
After integration, one thus finds
=g+, n21, ViezZ (2.10)

The second relation can be written as

K:pp_o(z — h) = 2(1 — cosb) [(nhijl) - ~2¢n(x)] .
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One then obtains, with = (s — r + k)h and n = k + 1, that
K20 "TE1 = 2(1 - cos 0)87F, k>1 (2.11)

Using (2.11), one can now rewrite (2.9) in terms of the B-coefficients. One thus finds that the
error related to (2.8) is given by

2(1 — cos¥d
Yonsirir) — vnikrror = 22 grripher [y @) )] (212)

with 2, < 7 < max(Tnt+1+k—r, Lntk)-

Let Cp41 be the error constant of the linear difference scheme based on mixed interpolation
where p is the order of the method; i.e., if £ is the linear difference operator associated with the
modified method, then

Lz(z);h] = i C,h? [nzz(q"z)(x)-i-z(‘”(x)].

q=p+1
Using this notation, we can now formally define the modified k-step r-Adams method as follows:

2(1 cosf) o

r=0, pg(E)yn = hag(E)fn) k>1, p=k, Cp+1 = ﬂ

2(1 - Coso)ﬂrk+1
— Pr+1 -

721, pry1(E)yn = hop 1 (E)fn, k27, p=k+1, Cppi=

Taking into account the explicit form of the trunction error associated with the k-step r-Adams

method, it is obvious how to choose the interpolation parameter k in order to raise the order of
the method. Indeed, attributing to « in each integration step the value for which

0, r=40,
) 4y —o, = {0 o

the principal term of the truncation error vanishes.

However, in practice, one can only try to approximate this value: first of all, the higher order
derivatives have to be re-expressed using the differential equation in terms of « and y(z). This, of
course, requires that f is given in an analytical form. Secondly, one needs to calculate y(n) where
1 is an unknown interior value. Since previous integration steps resulted in approximations of
y(z) in knot points x; in the neighbourhood of 7, one will attribute to x the value for which

0, r=40,
sz(k+6_1)(:1:j) + y(k+€+l)(xj) =0, €= { L 2o

for some knot point z;, (e.g., if an approximation for y, is wanted, then for small k, the choice
j = n may be used). In any case, the order of the method is raised by at least one unit, as has
already been shown elsewhere (see [15,16}).

Now that we have introduced our modified methods, we will more closely look at the
[B-coefficients that appear in the right-hand side of these methods.

Although our aim is to discuss the implementation of PC-pairs of modified Adams-Bashforth,
Adams-Moulton type, i.e., 0-Adams and 1-Adams schemes, we first derive some general proper-
ties.
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3. PROPERTIES OF THE COEFFICIENTS
OF r-ADAMS METHODS

In the following, we use the standard notation &;;, which is 1 for ¢ = j and 0 otherwise.

LEMMA 1. Fork > 1,

J
1. ﬁ;—l'k = Z ﬂ:‘k —2(1 — cos 0)6j,k_1ﬂk_1’k, J = 0(1)k,
2. B7F — B7FTH =21 — cos 8)(8,k-2 — 8;k-1)B; ", j=0(1)k -
3. ﬁ?”“"—ﬁ?’“ = 6o, J =10k,

— B = 2(1 — cos9) (A7 bk + B 61 )

4 ﬂ}f‘“‘— Tt =600+ 21 - cosO) 8k — Gie-)B T, =11k

ProoF. The proofs of Lemma 1.1-Lemma 1.4 follow from (2.5), (2.10), and (2.11) and the
following properties of the classical coefficients of:

J
- _§: r
= a;,
i=

-1 -1 .
o] —af =ory, j>1.
For more details see, for instance, [21]. 1

LEMMA 2. Fork > 2,
1. 0§, 1(6) = €op(€) + B (€ — 1)*~2(€2 — 2 cos b + 1),
2. 05 1(€) = 0L (&) + (€ = )ap7H(€)
3. B ot (6) = B VReor(€) — BYFoTTH(E),

4. £op(€) — op 71 (&) = BT P* M E - 1)F2(£% — 26 cosf + 1).
PROOF. For Lemma 2.1, we use (2.7) to obtain for k£ > 1

Tk+1(E) ~ Eoi(E) = Zﬂ"“ 1)~ Za”‘ (E-1)'E*,

which, due to Lemma 1.2, yields for k > 2

0% 11(E) — Ec(E) = By [(E —1)* + 2(1 — cos§)((E — 1)*2E? — (E — 1)*1E)] 51)
= Bvk(E - 1)F-2(E? — 2E cos 6 + 1). '

The proof of Lemma 2.2 makes use of Lemma 1.3. One easily obtains for k > 2 that

k
ok (E) - Uk+1(E) Z (ﬂ;,k - ﬂ;—l,k) v/ E*

3=0

k-1

— Zﬁ;—l,k—lvjEk—l(E _ 1)
j=0

= (E - 1)o}"Y(E).

To prove Lemma 2.3, one can start from (3.1) with 7 = 7¢ and r = 9 — 1. One then obtains
for k > 2

Bk (075, (6) — €07°(8)) = B* (07571(8) — a1 (9))

CAMA 30:10-D
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while Lemma 2.2 states that

o1 (6) ~ €00 TH(E) = 0331 () — a7 H(O)

Consequently,

Bk (07%1(8) — 607°(8)) = B* (07%1(8) — o 7H(9))

which proves Lemma 2.3, since 8}~ Lk ,6,:’ =61 Lkt
To prove Lemma 2.4, we substitute the right- hand side of Lemma 2.1 in the left-hand side of
the expression for Lemma 2.3. One obtains for k > 2

B [eoh(©) + 87 (e — 1F2E? - 26 cos 0+ 1)| = By Reat(6) — Brto (6.

Again, the lemma follows from 8]~ Lk ﬂ i 1 k-1 1

The properties listed in Lemma 2 give effectlve means to generate the oj.1(€) functions recur-
sively. As in Lemma 1, these properties are modifications of classical ones which can be retrieved
by setting € equal to 0, and replacing ﬂ;’k by of.

For r > 1, over-implicit schemes are constructed. In [21], it is shown that these r-Adams
schemes for k > r are very useful if one wishes to build more general difference schemes. Indeed,
as is the case with polynomial r-Adams methods, one is able to construct two families of linear
k-step methods with k — 1 parameters A,,r = 1(1)k — 1, of the form

k-1 k—1+¢
ZA Viniior =hY A, Y BV, Ap=1 (3.2)
r=0 r=0 1=0

For ¢ = 0, this family consists of explicit schemes, for ¢ = 1 implicit schemes are found. In
general, the constants A, should be chosen such that the resulting scheme satisfies at least
minimal stability requirements. To ascertain zero-stability, e.g., one finds that since

p(€) = (€ - 1) (651 +ar1€F 2+ - + ax_1) with
=A; — Ai_1, i = 1(1)k — 1, the polynomial
pE) = (" + a2+ +ar)

should have all its roots inside or on the unit circle, no multiple roots on the unit circle and no
root at +1.
Due to (2.12), one also finds

k-1
2(1 - cos @ e € e—
y(In-}-l) —Yny1 = "“(—92"—')' Z Arﬁki_e k+ehk+ +1 [K'zy(k+ 1)(771") + y(k+€+1)(nr)] ) (3'3)

where Tppe—k < M < MaX(Tp41-r, Tnte). Developing the derivatives in the right-hand side in a
Taylor series around x,, one finds that the order of (3.2) is k + € and the error constant is

k-1
2(1 — cos @ e kde
Ck+e+l = ( 92 ) § A'r ki€’k+ . (34)

Again, the order can be raised by a suitable choice of the interpolation parameter «, namely by
setting
y(k 1+e)( 5) + y(k+1+e)( ;) =0

?

for some knot point z;.
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Table 1. The elements of A,.

By | i=0 i=1 Jj=2

r=0 | 1 14228 ol el
r=1 1 -1+ esézs?o/zz) i cos®) ~ Fand
r=2 | 1 -1-g00 e - ey

Table 2. The elements of Aj3.

g% | i=0 j=1 j=2 i=3

r=0 1 3 -3+ sy — 555 ass?) ~ 7 s?l"ég%)zime
r=1 1 -1 it I g T=tos®) ~ Womd
r=2 1 -3 2T Wmc® ~ FenT ~ Tt W0
r=3 1 -3 3+ s Y ~ Timseswy * 70 si:l(gfz()zzino

For each k-value, both families in (3.2) depend on a set of values {ﬂ;’k} (0<ji<k0<r<k)
which can be written down in a two-dimensional array A. For k = 2 and k = 3, the arrays are
given in Table 1 and Table 2, respectively.

Apart from the properties listed in Lemma 1, one also finds that due to Lemma 1.3, the columns
of Ai possess a fair amount of structure.

LEMMA 3.

J i {3\ AT+t j
1 g = g(—l)z(i)ﬁjiﬁ"“, 0<i<k,

2. FI7TF = (—17[B7* + 2(1 — cos )b k-1 (B " + BLTF),  0<r<i<k

ProOF. The first relation can easily be proved by means of induction on j. Clearly, equality

holds for j = 0 and j = 1. Suppose that equality holds for j = jg, one then finds using Lemma 1.3
and Pascal’s identity,

B = fj(—l)i(j;’) (

1=0
gritiot] Jo r i k+jo+1 1)jo+1gr+io+1k+jo+1
]o+1+l + Z( 1) [( > (z — 1)] ﬁjo+1+l +(=1) ﬁ]0+1+l

+1
]DZ Jo+1 grHiktiotl
- 3 Jo+1+1 '
which proves the validity of Lemma 3.1 for j = jo + 1.

To prove Lemma 3.2, we will first show that for all » € {0,1,...,j}
T = (-1, (3.5)

e [ [ (o [ ()

Since ﬂ;’k = af, j = 0(1)k — 2, we now only have to prove Lemma 3.2 for j = k — 1 and j = k.
To that aim, we will use the property (see, e.g., [18])

bn (%h - x) = (~-1)"*g, (%’—l + x) n > 0. (3.6)

griiktiotl _ groitlktiot
Jo+1+ jo+1+L

Indeed,
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Using (3.6), one finds that
$i41((s —J + 7+ k) = (1) ¢j41((2 —k —7 + 1 = 8)h),

sothat forj=k—1lorj=k

j—rk _ ‘—'r‘__ 2 —j+r+k
IBJ - a] Jj+1

= (—1)ja;- - nz/ $is1((s—J+r+k)h)ds
0
1

=(-1) [a; - n2/ di+1{(2f —k—r+5s) ds}

= (-1)7 o] — K26¥3* 7]
For j = k, one finds

B = (1) [of - K0T = (CD 6,

while j = k — 1 results by using (2.5), (2.11), and Lemma 1.3 in

ﬂk 1- rk l)k 1 —r+k— 2]

CREP

(O [ 2 (g - )

_q)k-1 [ L +2(1 - cos8) (ﬂ;:ffl - IZI?,HI)]
&

(k-1 ig" 1+21—c0s6?)<ﬁ +ﬁr+1k)]

H

This completes the proof of Lemma 3. 1

Lemma 3.2 explains why, in some cases, the order of a method turns out to be higher than ex-
pected according to (3.3). Consider, e.g., the case k =2, e = 1, Ag = A; = 1. The corresponding
implicit method is given by

_ 6 —siné 2(sin@ — 6 cos h)
Yn+1 ~Yn-1=h [0(1 s 0) (fa—1+ fag1) + (1 = cos ) Il 3.7

The error constant, computed according to (3.4), vanishes due to Lemma 3.2. However, setting
k=3, Ao = A; =1, and Ay = 0, the same (fourth order) method is found and from (3.4), one
finds that the error constant is given by

2(1 — cosb)

= K (g1 ) -

3sin@ — Gcosh — 20
36%(1 — cosf)

(3.8)

The results (3.7) and (3.8) have already been found earlier. Indeed, in [15,16], they have been
found to constitute the modified Simpson rule.

4. IMPLEMENTATION OF ABM METHODS AS PC-PAIRS

Most modern predictor-corrector methods for nonstiff problems use Adams-Bashforth methods
as predictors and Adams-Moulton methods as correctors (the » = 1 and 7 = 0 cases of the
previous paragraph). One of the main reasons in favour of this class of methods is that they can
be implemented very efficiently as is explained by Lambert in {21]. In this section, we will have
a closer look at the implementation of the corresponding modified methods.

However, before discussing the implementation of ABM-methods, let us first of all look at the
use of general modified linear multistep methods in P(EC)*E!~* mode (t € {0,1}), where P,
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E, and C stand for the application of the predictor, the evaluation of the right-hand side of the
differential equation and the application of the corrector, respectively.

Let
k k-1
Pr Y @5Unsy = h)_ b,
i=0 =0

. . (4.1)
C: D ants =h)_ bifats
3=0 3=0
then P(EC)“E'~" mode gives
k—1 k=1
P yihe + D asui =R br A,
j=0 =0
(EC)H: ff[;].k =f ($n+kyy,[:ik) ) 42

k-1 k-1
W43 e = oM RS 0 =0 -1,
j=0 7=0

El—ti f,gﬁ]_k = f (mn+k7y£;u.|]_k) s ift =0.

In the above scheme (4.2), no distinction has been made between scalar problems or systems
of equations. However, it should be understood that when applying (4.2) to an m-dimensional
system

Y= fe Yy, ™), i=11)m,

not only the y,,; and f,[l"lj values have become vectors, but also the a;, aj, b;, and b’; values.
Indeed, instead of starting with one parameter , we start with a set of m interpolation parameters
%, one for each of the m equations. To each of these parameters, one can then associate the linear
difference operators ’L* and £ given by

iC*(2(z); h] = iC;‘th‘H [%22(10*—1)(33) * z(p‘+1)(m)] +0 <hp‘+2) ,
Lle(z)i bl = Cprah*! 22070 (2) + 2040 ()] + 0 (w242).
Each of the ’L* has order p* and each of the £ has order p.
Making the localizing assumption that yL”_}_ ;= YntisJ = 0(1)k — 1 and indicating by ﬂm_ . the

approximation to y at T, generated under this assumption, one finds for every component %,
i=1(1)m

Y(@nsk) = Tope = Cpogrh? [W Yy D (z,) + iy(”'+1)(xn)] + 0O (kP2
and
; i~v+1 ; . 1 ;
ly(zn-i-k) - yq['L:k] = hz lbk% ($n+k7 ]*y,,l-, ey m‘yum) []y($n+k) — ]y'll'zl-k] + Cp+1hp+l
=1

x [%2 YD (g,) + ’;y(”H)(xn)] +OMPY), v =0(1)u -1,
(4.3)
where Jy,,, is some value between Jy(zn %) and jgjm_k.
It is then straightforward to show that if p* > p (or p* < p and u > p — p*), the PC method
and the corrector have the same order and the same principal local truncation error (PLTE), i.e.,

for i =1(1)m

Y (@nik) — @Eﬂk = Cpy Pt [%2 ye-(z ) + iy“’*”(xn)] + O (hP+2).
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It thus becomes clear how to choose the interpolation parameters %2 in order to raise the order
of the method: if the PC-pair corresponding to ‘C* and L for i = 1(1)m is applied in order to
obtain an approximation for %,., ¢ = 1(1)m where p* > p (or p* < p and pu > p — p*), the

choice )
’y(”“)(mn)

%? = ~Y () (4.4)
will raise the order of the method to p+ 1. Again, we want to stress the fact that the derivatives
can be calculated in any knot point z,. If occasionally %(z, )"~ = 0, %2 will be attributed a
very large (positive or negative) value. To prevent a significant loss of accuracy in the solution
Yntk, @ good strategy may be to set % to zero in that step, i.e., to use the known polynomial
method.

The condition p* > p (or p* < p and g > p — p*) is essential for the choice (4.4). If this
condition is not fulfilled, one finds that, in general, a system of transcendental equations in x,
J = 1{1)m has to be solved. This situation should, therefore, be avoided. In the rest of this
paper, we will always assume that this is the case. Also, the choice (4.4) means that each %2 can
be calculated from the knowledge of the component % and its derivatives in x, solely, i.e., only
one component of the solution is of importance. Therefore, whenever possible we will drop the
superscript in the notation for the rest of the article.

If p* = p, the classical schemes allow an estimation for the PLTE by means of Milne’s device.
The modified schemes allow the same technique from

CpyrhPH! [”2y(p_l)(17n) + y(”H)(xn)] = Y(Tn+k) — y1[1,-]|-k +0 (hP*?),

and
Cpsh¥*1 (K20 () + 4"+ (20)] = yl@nsn) = 31, + O (B4,

one finds after subtraction and neglecting higher order terms that
PLTE = Cpsh"** [y () +y"+) (za)| = W (4l - 3%, ),

with
C,
W=_———et1_ 4.5
C*+1 - Cp+1 ( )

p
i.e., the Milne estimate is obtained from the same formula as in the classical case. Since the
choice (4.4) would mean that this estimate is zero, a different choice for x? will be needed. When
Milne’s device is used to perform local extrapolation (L) in a P(ECL)*E!~¢, (t € {0,1}), the
choice (p42)
2 YT (zn)
=) 46
” Y (z) (4.6)
is proposed, since C(,)L=C(p41) where p is the order of the corrector.
P(ECL)*E!-t

k—1
0 * *
P: yll-]Hc + Z aj yL‘iJ =h Z b; [‘jrjt]’
(ECL)“: f‘,[;].k = f(zn-f'k, y,[,.}_k)
N 4.7
G+ Z ajyl; = Wb fidy + b Z b fH, v=0(1)u-

ytl =1+ W)yL"Ik” Wyl e,

El-t L = F(@nrro ™), ift=0



r-Adams Methods 47

As was mentioned in the beginning of this section, the preceding algorithms can be written in
a computationally convenient and economical form if the PC-pair is a modified ABM-method.
Indeed, these methods, when expressed in backward difference form, possess simple and attractive
structures which can be fully exploited in the framework of PC-methods. Consider, e.g., the
PC-pair

= ; 2(1 — cos8)
Pr Yn—n=h) B Vfa, p =k Chyy= B
i=0
= ; 2(1 — cos )
C: Ynt1—Un= hZﬂil’k_IsznH, p=k Cp= Tﬁ]};‘k'
i=0
Let V¢, be defined as
; Vl [M] P 7& n+ 1,
Vifs =1 il L A _
Vf +fn+1 fn+17 p=n+1?
one can then, for instance, write the P(EC)*E!~* algorithm as
. k-1 '
P: oy =yl h Y A e,
i=0
(EO:  fidi = f@nsn,unh),
v=0(1)p -1, (4.8)
ylluj—ll] _ y[u] + hZﬂl - lvz "/.—L{-lt]’
=0
Bt ) = Fanrn, ), ift =0.
The computational effort of this algorithm (computation and storage of V* [;:th], i=0(1)k-1
for every v € {0,1,...,k — 1}) can be reduced to the computation of just one such difference if

we make use of the following lemma.

LEMMA 4. Fork > 2,

L Z( rk lv]fn+ _IBT 1,k— lvjfn) ﬂr 1,k— 1(kan+1+2(1—C050)Vk_2fn);

2 Zﬂ""vmﬂ Zﬂ’ PN = BTN (W a4 2(1 — cosB)VF TS

j=0
PRrROOF. We rewrite the left—hand side of the first equation as S(V)f,+1 where

k-1

S(V):=3" (ﬂ;”“'lvj — gk lyi(r - V))

Jj=0
g,k—l_ g—l,k 1+z<rkl rlk 1)v]+zﬂr 1,k— IV’“
so that for k > 2, due to Lemma 1.3, Lemma 1.2, and Lemma 1.3, respectively,

k-1
S(V) = 6,/:—1 . 1,k—1 Z r—lk 2V]+Zﬁ;'—l,k—lvj+1

k=1
k—1 ~1k-1 ~Lk-1 ~Lk=1
0" = B — cos6) Z ik-2 — 85k—1) By VI + By vk
i=t
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TP 201 - cos ) VA1 ~ V) + V],

from which Lemma 4.1 can be deduced.
To prove the second part, one finds with Lemnma 1.2 that

k k-1
Zﬁyr"kvjfnﬂ - Zﬂ;_l’k_lvjf ﬁ;kka"“ +Z( Tkv]f""'l ﬂr " Vfn )
=0 j=0
= B, kafn+1 + 2(1 — cos 0) 8y (Vk % fnt1 — Vk—lfn+1)

+ E ( grk- IV frp - ﬁr—l k— IV]fn) ,

from which Lemma 4.2 can be derived by means of Lemma 4.1 and Lemma 1.3. ]
Due to Lemma 4.1, one finds for & > 2, on subtracting the expression for yg))]rl from that for
y,[:_}H that

vl = b+ haRA [V"f,&ifl +2(1 - cosO)VE2gd] (49)

Also, since V? f[" 1_vi_, f,[,’;lt] = f,[:;]_l e " || one finds due to Lemma 1.1

ubh =i g (A - A5Y) v=o@u -t (4.10)

Clearly, the implementation of equations (4.8) is equivalent to that of

k-1
P: Ynby = W+ Ry BRIV A,

i=0
(EC)*: fﬂl =f (In+1,yﬂl) )
yglq yl?—]f—l +hBE! [ka,[ﬂ.lt] + 2(1 — cos 0)V'°‘2f,[{‘“]] ,

[ (4.11)
f"[:;]-l = f ($n+1aynu.}.1) ’
yt = o+ R (2 - )
B ) = fanenly),  ift=0.
It is assumed that the back data Vif¥ ™ i = 0(1)k — 1, have been stored. To carry out the
sequence (4.11), one needs to compute the differences V§ f,/ o t] and V&_, f [~ t] and a value for 8

is necessary in order to be able to compute the S-values. The dlfferences needed can be obtained

from .
Vz+1f[u t _ f[l‘ t] V'fr[:‘“], i =0(1)k —

and o
f[lth] — ka[#'*t] + f[# t] f7[1.-!-1’

while a value for 8, i.e., « is due to (4.4) given by

y(k+1)( n)
n)

©E Ty (g,

Finally, to be ready for the next step, the back data can be updated by computing

T SO TR, ok -2
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In an analogous way, the algorithms corresponding to P(ECL)*E'™" mode (¢t € {0,1}) can
be described. As is the case with the polynomial ABM-schemes when applied in P(ECL)*E!~¢-
mode, it turns out that Py (EC(xL)*E*~" = Py (EC(x41))*E'~*, where the subscript denotes

the order of the method. Indeed, from (4.7), it turns out that (with yi? _]H = 3/7[?11

yg:f] - ylﬂrl (1+Ww) ( Luflll Ezﬂ-l) v=0(1)p— 1.
Following the same strategy as the one that led to (4.9) and (4.10), one finds with W =
BY* J( Ok _ BL*%) such that 1 + W = el k=1 that
ublly = bk + ha* [VEALT 4+ 201 - cosg) VR A (4.12)
o = ol sl (M - ), v=0e -1 (4.13)

On the other hand, if a corrector of order k + 1 is used, then on account of Lemma 4.2, one
finds from (4.11) for the v = 0 case

k k=1
whly = ulh + 1Y BV —h Y B
i=0 i=0
=%+ ns0 [ E710 +2(1 — cos)VE2 flp]
while again (4.13) is found for v = 0(1)u — 1, i.e., both algorithms use the same formulas.
If Milne’s device is also used to perform step-size control, then one also needs an expression
for this estimation (denoted by T) of the PLTE. Due to Lemma 4.1 and Lemma 4.3, one finds
Tosr = hBP% [Vh_ FUTY +2(1 - cos )52 ]

The P(ECL)“E'"* mode, t € {0,1}, can thus be implemented as follows:

k-1
P: i = U+

(ECL:  fili=f (wn+1,yn+)

91311 = yﬂfl + hﬂ {V ,[:ﬁrlt] +2(1 — cos§)V*~ 2 flu— t]]

f};]-l = (Z'n+1,yn+ ) (4.14)
v=11p-
o = ol he* (10 L"H”),
El-t. el =t (xnﬂ,yul), it =
T: Tot1 = hBY* [VE_ S5 t]+2(1—c030)V’° 2 o]

Now that we have shown that the computational effort and storage of the differences can
be reduced significantly, one may wonder what computational overhead is associated with the
computation of k2. First of all, an expression for %2, i = 1(1)m has to be derived by differentiation
of the differential system of interest. These expressmns are then used to compute one set of
(-values in each knot point (in fact, only ﬁk , and ﬁk * have to be recomputed in each point).
This means that, in general, k — 2+ 2m values are needed, i.e., there is no storage overhead when
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applied to scalar equations with fixed £ during the integration process. If k varies, special care
has to be taken since for each k-considered different ﬁ;’fl and ﬁ,’;’k values have to be used.

To support the theory, we consider the application of our methods on two popular problems.
For bigger problems, analogous results can be obtained. As a first example, we will investigate
the application of a P)(EC)L)*-mode to the problem

v =vV1-y2/1-my?,  y(0)=0, (4.15)

for which the exact solution is given by the elliptic sine function. In this example, we use

m = 0.25. This problem has already been discussed in [15] in the framework of explicit methods.
Since local extrapolation is getting used, we take g > 2 in order to be able to attribute a value

to k2. If the current value that is being computed is yn+1, We attribute to k2 the value x2 given

by

2 _ _y(k+2)(l'n)

Ty B(z,)

where the higher order derivatives are re-expressed in terms of z,, and y(z,) by means of the
differential equation in (4.15). One thus obtains

K (4.16)

14 14m + m? = 20m(1 + m)y2 + 24m2y?
14+m —2my2 ’

1+ 14m + m? — 60m(1 + m)y2 + 120m2y}
1+ m — 6my2 ’

K2 = 1 (4.17)
1+ 14m + m? — 60m(1 + m)y2 + 120m2y3

x (1 + 135m + 135m? + m?
—m(182 + 868m + 182m?)y2
+840m2(1 + m)y2 — 720m3y8), k=4.

With these values for x2, the -coefficients are computed once and used throughout the itera-
tion.

One might argue that there are more efficient ways to calculate £2. Indeed, one can approxi-
mate the derivatives in (4.16) by means of backward differences of f since the algorithm already
needs these differences. However, there is a technical problem at the start of the integration
process since differences up to order k + 1 are needed and only differences up to order & — 1 can
be calculated from the starting values. Since we did not try to obtain a self-starting code, i.e., we
did not consider the problem of how to obtain the necessary starting values anyhow, we didn’t
follow this idea to calculate x2 neither.

The results are shown in Table 3 and Table 4. In Table 3, the differences y(zn+1) — Yn+1
(denoted as A, if mixed interpolation is used and A, for the classical methods) are shown for
k=2, 3 and 4 and u = 2 (upper value) and 3 (lower value) in different knot points for h = 0.1.
In Table 4, the corresponding results are shown for h = 0.01. For both values of A, exact starting
values are used. The starting points are chosen such that the first calculated y-value is located
in £ = 0.6 in both cases.

For the modified methods, the values of k2 are tabulated in the different knot points. Since they
are based on the approximation of y, different values of x2 are expected for different p-values.
However, it turns out that in most cases, the 2 values are the same (to the accuracy shown).
Only if this is not the case, the two different values are tabulated.

Most of the theoretical considerations can be observed from Table 3 and Table 4. Indeed, since
the first calculated value for both tables is the same and since exact starting values are used,
order comparisons can be made at this point. One can, e.g., easily deduce from the results for
both h values that the modified methods possess order k + 2. The polynomial methods, on the
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Table 3. Absolute errors produced by the modified (A,,) and classical (Ac) k-step
ABM-methods with stepsize A = 0.1 applied in P(ECL)* mode for &k = 2, 3 and 4
and u = 2 and 3 to problem (4.15). Exact starting values are assumed; y(0.6) is the
first calculated value. The notation (n) means 10™".
k=2 k=3 k=4
x
Dm K2 Ac Am K2 A Am K2 Ac
0.6 8.041 (7) 2.839 | —6.257 (6) | —4.198 (8) 0.782 | —1.948 (7) 2.426 (9) 7.205 2.086 (7)
8.173 (8) —6.186 (6) | —7.655 (8) —~2.417 (7) 1.504 (8) 2.042 (7)
0.8 4.757 (6) 2.184 | —1.837 (5) 2.855 (7) —-2.733 4.844 (7) | —4.206 (8) 5.158 5.180 (7)
1.670 (7) —1.629 (5) | —2.498 (7) 8.374 (8) 5.458 (8) 5.032 (7)
1.0 8.276 (6) 1.469 | —2.436 (5) 2.457 (6) —10.544 1.847 (6) | —9.369 (8) 2.325 5.384 (7)
1.655 (7) —2.101 (5) | —5.162 (7) 9.602 (7) 9.466 (8) 5.753 (7)
1.2 1.025 (5) 0.788 | —2.303 (5) 1.748 (5) —47.330 3.072(6) | —1.657(7) —2.563 2.538 (7)
3.915 (8) —1.949 (5) | —1.811 (6) —47.339 1.688 (6) 1.303 (7) 4.405 (7)
1.4 9.683 (6) 0.229 | —1.489 (5) 7.437 (4) 71.817 3.390 (6) | —3.110(7) —22.149 | —2.807 (7)
—2.244 (7) 0.228 | —1.290 (5) | —4.552 (5) 71.250 1.718 (6) 1.992 (7) -—22.148 2.194 (7)
Table 4. Absolute errors produced by the modified (A.) and classical (A¢) k-step
ABM-methods with stepsize h = 0.01 applied in P(ECL)# mode for k = 2, 3 and 4
and p = 2 and 3 to problem (4.15). Exact starting values are assumed; y(0.6) is the
first calculated value. The notation (n) means 10",
k=2 k=3 k=4
z
Am K2 Ac Am n% Ae A "3; Ae
0.6]7.109 (12) 2.558 | —6.443 (10) | —2.411 (14)  —0.526 | 8.576 (13) | 1.039 (15) 6.362| 1.861 (13)
1.090 (12) —6.415 (10) | —8.188 (14) 8.096 (13) | 2.136 (15) 1.862 (13)
0.8|3.297 (10) 1.864| —1.159 (8) | 5.843 (12)  —5.354 | 6.241 (11) | —2.615 (14) 4.010| 2.743 (12)
2.329 (11) —1.146 (8) | —1.708 (12) 5923 (11)| 4.517 (14) 2.766 (12)
1.0|5.968 (10) 1.153| —1.700 (8) | 4.006 (11) —18.637 | 1.571 (10) | —6.937 (14) 0.564| 2.969 (12)
4.193 (11) —1.680 (8) | —3.443 (12) 1.504 (10) | 8.149 (14) 3.063 (12)
1.2]7.101 (10) 0.516| —1.623 (8) | 5.213 (10) —392.547|2.190 (10) | —1.375 (13)  —7.073| 1.530 (12)
4.985 (11) ~1.604 (8) | ~1.143 (11) 2.098 (10) [ 1.115 (13) 1.745 (12)
1.4]6.057 (10) 0.037| —1.054 (8) | —5.693 (10)  41.906 | 2.022 (10) | —3.673 (13) —157.885 | —4.204 (13)
4.197 (11) —1.048 (8) | 4.866 (12) 1.942 (10) | 2.250 (13) —4.087 (14)

other hand, always have order k£ + 1. Also, one can verify that the ;2 = 2 and u = 3 cases possess
the same order, which again confirms the theory.

Secondly, some interesting properties can be deduced from this example. First of all, initially
all modified methods produce better results than the corresponding classical ones as was expected
by the theory. However, since the solution of problem (4.15) is far from a linear combination of
a sine, a cosine, and a polynomial function, x2 is far from a constant value. It even turns out
that for k = 3 and k = 4, s2 is attributed very large (positive and negative) values. It can be
seen from Tables 3 and 4 that in these points, the accuracy attained by the modified methods
decreases significantly due to these (too) large values.

A reasonable question is of course: what is the computational cost of our methods in comparison
with their classical counterparts? To answer this question, we have incorporated Table 5. Here ¢,
and t,,, denote the times in (sec/100000) that are needed to proceed with k¥ = 2 in P(ECL)*#-mode
from xg to xx = 1.4 where zg is chosen in such a way that the first calculated y-value is located
in z = 0.6 (actually, times were measured in sec/100 on a 486-66 MHz PC and the program was
executed 1000 times). For k = 2, we obtained from Table 3 and Table 4 that % is small, which
means that the modified coefficients can easily be written in Taylor-series expansions where terms
up to x? are kept. As expected, the execution of the modified method is slower, but the gain in
accuracy clearly compensates this disadvantage for high accuracies.
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Table 5. Absolute errors (A) and execution times (t) (in sec/100.000) in £ = 1.4
produced by the modified (Ay,) and classical (A;) k-step ABM-methods for various
stepsizes applied in P(ECL)* mode for k = 2 and 3 and p = 2 to problem (4.15).
The notation (n) means 10~ ™.

h Ae te Am tm

0.100 | —1.489(5) 208 | 1.177(5) 242
0.050 | —1.519(6) 269 | 5679(7) 335
0.025 | —1.733(7) 390 | 3.098(8) 516
0.020 | —8.722(8) 450 | 1.234(8) 612
0.010 | —1.054(8) 747 | 7.292(10) 1054
0.005 | —1.295(9) 1351 | 4.430(11) 1955

h A, te Am tm
0.100 ~1.290 (5 231 1.878 (6) 269

)
0.050 | —1.450(6) 308 | 1.121(7) 373
0.025 | —1.703(7) 472 | 6.688(9) 593

)

)

)

0.020 | —8.608(8 549 | 2.710(9) 703
0.010 | —1.048(8 945 | 1.655(10) 1252
0.005 | —1.292(9) 1736 | 1.021(11) 2345

As a second example, we consider the popular test problem
2" + z = 0.001€'®, 2(0) =1, 2'(0)=0.9995i, (4.18)

for which the exact solution is given by z(z) = (1 — 0.0005iz)e'®

This system, known as the Stiefel-Bettis problem, has been used earlier several times to study
methods designed for problems with nearly periodic solutions (see, e.g., [3,13,16]).

To solve this problem, we write (4.18) as

Y=, y(0) = 1,
% =-%+000lcosz, %(0)=0, (419)
Y ="y, %(0) =0, '
%' = - % 4+000lsinz, %(0) = 0.9995,
for which the exact solution is given by
Y(z) = cosz + 0.0005z sin z,
= —0.9995 sin z + 0.0005z cos x,
:y( “) (4.20)
y(z) = sinz — 0.0005z cos x,
%(x) = 0.9995 cos = + 0.0005z sin .
The values attributed to ? according to (4.6) for k = 2, 3 and 4 are
(12 _ Y,, — 0.002 cos T,
" Yy, —0.001cosz,’
2.2 _ %yn + 0.002sinz,
k=2 % + 0.001sinz,’ (4.21)

32 Yn—0.002sinz,
%, —0.001sinz,’
42 ‘yn—0.002coszn
L7 Ly, —0.00lcosz,’
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L2 _ Yo +0.002sinz,

%, +0.001sinz,,
25  yn—0.003cosz,

Yy —0.002cos z,,’
32 ‘y,—0.002cosz,
4, — 0.001 cos =,
42y, —0.003sinz,
3y, —0.002sinz,’
12  Yn —0.003cos T,
yn — 0.002cos z,,’
9o %y +0.003sinz,
%, +0.002sinz,,’
3 2 %, — 0.003sin z,
3y, —0.002sinz,,’
492  yn—0.003cosz,
4. —0.002cos z,,
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(4.22)

(4.23)

We applied the P () (EC)L)* algorithm to problem (4.19) for k = 2 and k = 3 with p = 2.
The results are shown in Table 6, where the errors in |2(407)| are listed. The results are produced
with exact starting values. Each time z¢ was set to 7.

Table 6. Absolute errors in |z(407)| produced by the modified (A,,) and classical
(Ac) k-step ABM-methods for various stepsizes applied in P(ECL)* mode for k = 2
and 3 and p = 2 to problem (4.18). The column Ay corresponds to our modified

method with fixed x values. The notation (n) means 10~™.

N k=2 k=3
D Ay Ac Am Ay Ac
w/4 | 1.220(3) | 1.362 (4) 9.716 (1) | —5320(4) | 1.077(4) | —1.953 (0)
x/8 | 7.804(5) | 1.500(5) | —6.036(2) | —3.804(6) | 9.130(7) | —1.500 (1)
n/16 | 4.513(6) | 1.047(6) | —3.131(2) | —2.610(7) | 9.939(8) | —5.315(3)

For both k-values, 3 results are given. As in previous tables, A, stands for the classical case,
A,, for the modified one. It is obvious from the above results that the modified methods give
a considerable gain due to the choice (4.6) with p = k. As it turns out that this results in
%2 = 0.999 for all values of z, we have also performed our modified scheme where each ? is
given this fixed value 0.999. The results obtained (see columns labelled Af) even produce better
results than with variable 2.

From the above, we may conclude that our modified methods can be implemented in a
predictor-corrector pair without any problem. So far however, these methods have only been
studied in fixed-step implementations. The study of variable step and/or variable order imple-
mentations has not been performed yet. Developing a code in which all of this is included is
beyond the scope of this paper. These matters remain challenges for future work.
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