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A b s t r a c t - - W e  investigate the properties of the coefficients of modified r-Adams methods for 
the integration of ODEs. The derivation of these methods is, in contrast with the classical Adams 
methods, not based on a polynomial interpolation theory, but rather starts from a mixed interpolation 
theory in which a parameter a is involved. It will be shown that the coefficients of the modified 
methods possess properties which make these methods very attractive. Further, we will discuss the 
role of so-called over-implicit modified r-Adams schemes in the construction of more general linear 
multistep methods. Our second goal is to show that the modified Adams-Bashforth/Adams-Moulton 
methods axe very well suited to be implemented as a predictor-corrector pair. In particular, we will 
discuss the choice of the interpolation parameter when such a method is applied to general systems 
of equations. Numerical tests are performed to support the theory. 

K e y w o r d s - - N u m e r i c a l  integration, Interpolation, Multistep methods. 

1.  I N T R O D U C T I O N  

Many  methods  have been developed in the last several decades for the step-by-step integrat ion 

of  ord inary  differential equations. Some of them take advantage of special properties of  the O D E  

solution tha t  m a y  be known in advance. Several exponential  fitting methods  have thus been 

developed for problems where the solution has an exponential  or an oscillatory character.  Ear ly  

work in this area has been carried out  by Gautschi  [1], Stiefel and Bettis  [2], Bett is  [3], and 

Lyche [4]. In the seventies and the eighties, new methods  have been presented by Rapt is  and 

Allison [5], Ixaru and Rizea [6], van der Houwen en Sommeijer [7], Neta  and Ford [8], Neta  [9], 

Rapt is  and Cash [10]. More recent work is due to Panovsky and Richardson [11], Coleman [12], 

Coleman and Boo th  [13], Simos [14], and some of the present authors  [15,16] to name a few. 

In these earlier papers [15,16], the construct ion of new integration methods  of Adams- type  for 

first-order differential equations of the form 

y' -- f ( x ,  y), y(a) = 7, (1.1) 

based on a mixed- type  interpolation technique [17,18] has been discussed. The  mixed interpola- 

t ion functions are a combinat ion of polynomials up to degree q - 2 ,  and t r igonometr ic  polynomials  
of first order with respect to a frequency g (i.e., a linear combinat ion of the functions sin ax  and 

cos ~x; note  tha t  in the case tha t  ~ is a purely imaginary value, the last two functions are re- 
placed by e ~ and e-~X). The  error being known at interpolation level, the order of the local 
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3 8  M .  VAN DAELE e t  a l .  

truncation error of the corresponding difference method can be raised by a suitable choice of the 
interpolation parameter ,~. 

In [17,18], it was also shown that in the limit for n going to 0, this mixed-type interpolation 
theory results in polynomial interpolation through the same set of points. Consequently, the 
newly developed integration schemes reduce to the known ones if a tends to zero. 

Since the Adams-Bashforth and Adams-Moulton schemes have attractive properties which 
assure that  they can be implemented very efficiently as a predictor-corrector (PC) pair, these 
methods, which we will call ABM schemes, are used worldwide. The purpose of this paper is to 
show that  our modified ABM schemes, based on mixed interpolation, satisfy analogous properties 
and can be implemented nearly as cheaply as the classical schemes. 

Secondly, the so-called r-Adams methods are known to be the building blocks to construct 
families of general linear differential methods. Before examining the implementation of PC-pairs 
of ABM-type, we will first examine the construction of modified general linear differential methods 
based on modified r-Adams methods. 

In the next section, we start  with the introduction of the necessary definitions and notations 
and the derivation of some general properties. 

2.  G E N E R A L  P R O P E R T I E S  

In [15,16], it was shown that  the modified schemes of Adams type can be obtained by replacing 
f ( x ,  y(x)) in the identity 

f 
Xn-t- 1 

y(xn+l) - y(xn) = f (x ,  y(x)) dx (2.1) 
J 7g n 

by the mixed interpolation function I~(x) = I~(xn+r + sh) = / ~ ( s )  through the k + 1 equidistant 
points xn+~- ih ,  i = 0(1)k. For r = 0 and r = 1, one thus obtains the modified Adams-Bashforth 
and Adams-Moulton formulae. For the time being, r can be any integer. 

In [17,18], it was shown that  

k 

i = 0  

- ~2¢k((s + k)h)Vk- l fn+r  - a:¢k+l((s  + k)h)~Tkfn+r, 

under the condition that  Vl E Z : 0 ~ Ir  with 0 := ~;h and where the functions Cn(X) are defined 
in [17]. Moreover, it has been shown [18] that  the error related to (2.2) can be written, if kah < ~r, 
a s  

E ; ( f , x )  = h k - l c k ( x  -- Xn+r_k) [a2f(k-1)(~,y(~)) + f(k+l)(~,y(~))] , (2.3) 

where xn+~-k < ~ < xn+~. Since the first part in the right-hand side of (2.2) corresponds to the 
polynomial interpolant through the same set of points, one can already deduce that  by setting 
equal to 0 in a modified formula, the known classical analogue will be retrieved. 

With the general properties concerning the interpolation theory being introduced, we can 
proceed with the construction of modified Adams methods. Defining 

c~ -- ( - 1 ) '  ~ ds, 

/0 
one obtains, after the introduction of (2.2) in (2.1), that  y(x,~+l) is approximated by Yn+l through 

k 

- = h ( 2 . 4 )  

i----0 
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where f l~ ,k  ,- i = 0(1)k - 2, 
~-i ~-~ °li ' 

/3 ,k _ _ - , - + k  ( 2 . 5 )  k - 1  - -  ~--1 7"~k ' 

f l r , k  , 2 _ - r + k  
k = ~ -- r~ YCk+l " 

The constants a [  are the classical ones which can, e.g., be calculated by means of generating 
functions (see [19-21]). 

As can be seen from (2.5), only the last two coefficients /3~  1 and fl~,k are modified with 
respect to the polynomial case. This property was already observed by Bettis [3], by means of a 
completely different theory. 

There is also a second interesting remark that  can be made about (2.5): if one wishes to 
find out the classical relation that  corresponds to any modified equation, it suffices to set t~ (or 
equivalently O) equal to 0 and to replace any fl~'k-value by the corresponding a~-value. 

We now define 

p~+l(E) = E k+l-r - E k-r, k > r > O, (2.6) 

and 

k 
_ _ ,  k > 0 ,  ( 2 . 7 )  

i=O 

where E is the shift operator defined by Ef (x )  = f ( x  + h) such that  V = 1 - E  -x. After shifting, 
(2.4) results in the modified scheme 

prk+l(E)yn = hark+l(E)fn, k > r > O. (2.8) 

To obtain an expression for the truncation error associated with the scheme (2.8), one can 
proceed as follows. Since Ck(x) belongs to the space {sin~x, cosnx, 1, x, . . . ,  xk-1}, which is a 
k + 2 dimensional Chebyshev space provided that  0 < (k + 1)t~h < 7r, Ck(X) has at most k + 1 
distinct zeros in [0, (k + 1)h] (see, e.g., [22, Theorem 1.14]). Since Ck(jh) = 0, j = 0(1)k, by 
construction, Ck(z) has a constant sign in each interval ]jh, (j + 1)h[, j = 0(1)k. On account of 
the mean value theorem, the error of the scheme (2.4) can, for k > r > 0, be written as 

Xn+l 
y(x~+l) - Y~+I = E~(f, x) dx 

J X  n 

f 
l - - r  

= hk [ k ~2f(&-l)Q/'y(r/)) + f(k+l)(7/' Y(•))3 ] Ck((S + k)h) (2.9) ds 

= ,o (77) + ( ,  , 

with xn+r-k < r /<  max(xn+l,  Xn+r). 
This expression can be written in a more appropriate way, using the relationships given in [17], 

tha t  exist between the Cn(x) functions. Indeed, a first relationship is 

Cn(Z + h) = Cn(x) + Cn-x(z), n > 1. 

After integration, one thus finds 

l-1 qO/n = ~O/n -1 nt- ~n-1, n > 1, Vl • Z. (2.10) 

The second relation can be written as 

~2¢~_2(x - h) = 2 ( 1 -  cosO) [ ( & ) - ~2¢~(x)] . 
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One then obtains, with x = (s - r + k)h  and n = k + 1, that  

fj~ ~r,k r~" 2¥~k_l_-r+k-1 = 2(1 - cos ~J~k , k> l ._  (2.11) 

Using (2.11), one can now rewrite (2.9) in terms of the fl-coefficients. One thus finds that  the 
error related to (2.8) is given by 

2(1 -cose) + 
y (Xn+k+l - r )  - -  Yn+k+l-r  -- -0" ~ ~'k+l ( 2 . 1 2 )  

with xn < ~ < max(Xn+l+k-r ,Xn+k) .  

Let Cp+l be the error constant of the linear difference scheme based on mixed interpolation 
where p is the order of the method; i.e., if £ is the linear difference operator associated with the 
modified method, then 

oo 

q = p + l  

Using this notation, we can now formally define the modified k-step r-Adams method as follows: 

r = O, p°k(E)yn = h a ° ( E ) f n ,  k >_ 1, p = k, Cp+l = 

r > _ l ,  p r k + l ( E ) y n = h a ~ + l ( E ) f n ,  k>_r,  p = k + l ,  C p + l -  

2 ( 1 - c o s 8 )  0k 
, 

2(1  cos 

Taking into account the explicit form of the trunction error associated with the k-step r-Adams 
method, it is obvious how to choose the interpolation parameter a in order to raise the order of 
the method. Indeed, attributing to a in each integration step the value for which 

a2y(k+~-l) (~) + y(k+¢+l)(~) = 0, e = { O ,  r = O ,  

1, r # O ,  

the principal term of the truncation error vanishes. 

However, in practice, one can only t ry  to approximate this value: first of all, the higher order 
derivatives have to be re-expressed using the differential equation in terms of x and y(x ) .  This, of 
course, requires that  f is given in an analytical form. Secondly, one needs to calculate Y0?) where 
77 is an unknown interior value. Since previous integration steps resulted in approximations of 
y (x )  in knot points x~ in the neighbourhood of ~, one will attr ibute to ~ the value for which 

0, r ----- O, 
~2y(k+~- ' ) ( z j )  + y(k+~+~)(xj) = O, c = 

1, r # 0 ,  

for some knot point x j ,  (e.g., if an approximation for Yn+l is wanted, then for small k, the choice 
j = n may be used). In any case, the order of the method is raised by at least one unit, as has 
already been shown elsewhere (see [15,16]). 

Now that  we have introduced our modified methods, we will more closely look at the 
fl-coefficients that  appear in the right-hand side of these methods. 

Although our aim is to discuss the implementation of PC-pairs of modified Adams-Bashforth, 
Adams-Moulton type, i.e., 0-Adams and 1-Adams schemes, we first derive some general proper- 
ties. 
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3. PROPERTIES OF THE COEFFICIENTS 
OF r-ADAMS METHODS 

In the following, we use the standard notation 5ij, which is 1 for i = j and 0 otherwise. 

LEMMA 1. For  k >_ 1, 
J 

1. f ~ - l , k  = y~ ~ , }  _ 2(1 - COSO)~j,k-1]~; - l 'k ,  j --- 0(1)k, 
/ = 0  

41 

2. ~.,k _ f~,k-1 = 2(1 - COSO)(Sj,k_2 - v3,k-~)pk  , 

__ f4r- -1 ,  k - 1  3. f ~  - l ' k  ~ ; ' k  = t ~ j _  1 , 

z ~ , k  __ / ~ - l , k  ---- 2 ( 1  - - e o s e ) ( e ; ' l ( ~ 0 , k  n t- f ~ [ - 1 ' 1 ~ 1 , k )  , 

4. = " t~ j_  1 -~- 2(1 - cos - O j , k _ l ) P k  , 

j = 0 ( 1 ) k - I ,  

j = l ( 1 ) k ,  

j = l ( 1 ) k .  

P R O O F .  
r .  following propert ies  of the classical coefficients c%. 

J 
, .-1= c~j 

r - -1  ,. ,.--1 
O~j - -  O/j ~ OLj_ 1 ' 

For more details see, for instance, [21]. 

LEMMA 2. For  k >_ 2, 

1. 

The  proofs of  Lemma  1 .1-Lemma 1.4 follow from (2.5), (2.10), and (2.11) and the  

,. r r , k  ak+l(~)  = ~ak(~)  + j3 k (~ -- 1)k-2(~ 2 -- 2~COS~ + 1), 

2. r - -1  r ak+l(5  ) = ak+l(5)  + (~ - 1 ) a ; - l ( ~ )  , 

f : t r -  l , k -  l _ r  / ~ , . - 1 , k  ,. r , k  , . - 1  
3. - k - 1  ok+,~¢~ = Hi ~ak(~) - Zk ak (~), 

j _ > l .  

4. ~ a ; ( ~ ) - a  k ( ~ ) =  k-1 ~ - 1 ) k - 2 ( ~ 2 - 2 ~ c ° s S + l )  • 

PROOF. For Lemma  2.1, we use (2.7) to  obtain for k > 1 

k k - 1  

- =E~ ( E -  - E ~ ;  ( E - 1 ) i E  k- i ,  a ; + l ( E  ) E a ; ( E )  , . , k  1)~Ek-i ,.,k- 1 
i = 0  i = 0  

which, due to L emma  1.2, yields for k _> 2 

a ; + l ( E  ) _ Eark (E)  = ~ , k  [(E - 1) k + 2(1 - cosS) ( (E  - 1)k-2E2 - (E  - 1 ) k - l E ) ]  

= ~ k ' k ( E  -- 1)k-2(E  2 -- 2 E c o s 0  + 1). 

1.3. One easily obtains for k > 2 tha t  The  proof  of Lemma 2.2 makes use of Lemma 

k 
~ + I ( E )  ,--1 

j = 0  

k - 1  

= E ~ - I ' k - I V J E k - I ( E  - 1) 

(3.1) 

j = 0  

= ( E -  1 ) a~ - l (E ) .  

To prove Lemma  2.3, one can s tar t  from (3.1) with r = r0 and r = ro - 1. One then  obtains  
for k > 2  

ro f~ro, k ro - 1 ro - 1 - -  = - -  

30:10-0 
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while Lemma 2.2 states that  

ro - 1 ro - 1 ro t o -  1 
O'k+ 1 ( ~ ) -  O 'k+ l (~ )  

Consequently, 
ro ro = ( a ~ _ l  (~)  to--1 ]~ro,k  ro-l,  - k - ° k  

k 

which proves Lemma 2.3, s ince/~-1,k _ j3~,k = /~-~ ,k -1 .  

To prove Lemma 2.4, we substitute the right-hand side of Lemma 2.1 in the left-hand side of 
the expression for Lemma 2.3. One obtains for k > 2 

[~r-l'k-1 [~O'rk(~) Jr- [~;'k(~ -- 11k-2(~2 2 ~ C O S / ? - } - l ) ]  r t k r r,k r - 1  - = ' - 
k - 1  

Again, the lemma follows f rom/~ - l , k  _/~;,k = ]~ ; - l l , k -1"  R 

The properties listed in Lemma 2 give effective means to generate the ak+l (~) functions recur- 
sively. As in Lemma 1, these properties are modifications of classical ones which can be retrieved 
by setting 0 equal to 0, and replacing ~.jflr'k by aj.r 

For r > 1, over-implicit schemes are constructed. In [21], it is shown that  these r-Adams 
schemes for k > r are very useful if one wishes to build more general difference schemes. Indeed, 
as is the case with polynomial r-Adams methods, one is able to construct two families of linear 
k-step methods with k - 1 parameters At, r = l(1)k - 1, of the form 

k-1 k-1 k-l+e 
E A r v y n + l - r  = h E A r  E o r + e , k - l + c x - 7 i .  ~ v j n + ~ ,  A 0 : = l .  ( ~.3.2. 
r =0  r =0  i=0 

For e = 0, this family consists of explicit schemes, for e = 1 implicit schemes are found. In 
general, the constants Ar should be chosen such that  the resulting scheme satisfies at least 
minimal stability requirements. To ascertain zero-stability, e.g., one finds that  since 

p ( ~ )  = (~ --  1) ( ~ k - 1  _~_ at~k-2 ..}_... Jc ak-1) with 

ai = Ai - Ai-1, i = l(1)k - 1, the polynomial 

~(~) = (~k-1 7t - a l~k-2  _]_....jr_ ak-1) 

should have all its roots inside or on the unit circle, no multiple roots on the unit circle and no 

root at +1. 
Due to (2.12), one also finds 

2 ( 1 -  cos/?)k-X-~ ~ nr+~,k+e~k+~+l [ ] 
y(x,~+l) -- Yn+l -- -05 /_., "'r--k+~ '~ ~2y(k+c-1)(~r) + y(k+~+l)(??r) , (3.3) 

r =0  

where xn+~-k < ~r < max(xn+l - r ,  Xn+e). Developing the derivatives in the right-hand side m a 
Taylor series around xn, one finds that  the order of (3.2) is k + e and the error constant is 

2(1 - c o s / ? )  k-1 
Ck+~+l -- /?2 E "4"r'k+~r+~'k+~ . (3.4) 

r=0  

Again, the order can be raised by a suitable choice of the interpolation parameter g, namely by 
setting 

~2y(k-t+~)(x3) + y(k+l+~)(xj) = O, 

for some knot point xj. 
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r : 0  

r = l  

r = 2  

Table 1. The elements of .42. 

j=o 
1 

1 

1 

j = l  j = 2  

-1 + ~ 1 cosO 
0 cos(O/2) ~ 0 sin O 

- I + ~  i i 
0 cos(O/2) ~ 0 sin 0 

- 1  - ~ i cosO 
0 cos(O/2) 2(1--cos 0) OsinO 

Table 2. The elements of ~A3. 

D~,3 j = 0  j = l  

r = 0  1 ! 2 
1 r = l  1 2 

r = 2  1 3 2 

r = 3  1 5 2 

j = 2  j = 3  

3 1 cos20 3 s in (30 /2 )  
Jr- ~ 0 s i n 0  4(1--cos  0) 20 sin (0 /2)  sin 0 

1_ 1 cos 0 I i 
+ ~ 0 ~ i ~ 0  ~ - 

1 1 1 1 1 
-~- ~ )  0 sin 0 4(1--cos 0) Jv 

1 cos 0 
3 ..~ ~ )  0 s i n 0  

3 ~i~(a0/2) 
-- ~ -1- 20 sin(O/2) sin 0 

For each k-value, bo th  families in (3.2) depend on a set of values {~3f 'k} (0 <_ j < k, 0 < r < k) 
which can be wri t ten  down in a two-dimensional array Ak. For k = 2 and k = 3, the arrays are 
given in Table 1 and Table 2, respectively. 

Apar t  from the  propert ies  listed in Lemma 1, one also finds tha t  due to Lemma  1.3, the columns 
of ~4k possess a fair amount  of structure.  

LEMMA 3. 
J 

1. ~7,k K - , { _ l ~ i { j ~ f 4 r + i , k + j  0 < 1 ( k ,  
= z_.~k I \ i } ~ j + l  , 

i=o 

= _ O~ ~ t~r , k  ~ r + l , k  , 2. /~j-~,k (-1)J[13~ 'k + 2(1 cos } j , k - l k t J k  + k )] 0 < ?~ < j < k. i- 3 

PROOF. The  first relation can easily be proved by means of induction on j .  Clearly, equal i ty  
holds for j = 0 and j = 1. Suppose tha t  equali ty holds for j = j0, one then  finds using Lemma  1.3 
and Pascal 's  identity, 

C:) /3r,k = ~-~(_1)~ @r+i,k+jo+l _ m~+i+l,k+jo+l~ 
l \ 3"o+1+Z "jo+l+l ] 

i=O 

= ~ r , k + j o + l  + {~r+i,k+jo+l + ( l ~ j o + l / ~ r + j o + l , k + j o + l  
jo+l+l z . . , , - 1 ,  ~ i 1 "jo+l+l x---] t-'jo+l+l 

i=l 

~-" Jo + 1 • jo+l, 
i i=0 

which proves the validity of Lemma 3.1 for j = j0 + 1. 
To prove Lemma  3.2, we will first show tha t  for all r E {0, 1 , . . .  , j }  

j - r  % = (3.5) 

Indeed, 

j~o1 ( ) f 0 1 (  ) ~ 1  ( ) ajJ-r  = (_1)  j j-r-sj ds= r+s-lj ds= r-tj dt=(_l)ja~" 

Since ;3~- 'k = a~, j = 0(1)k - 2, we now only have to  prove Lemma 3.2 for j = k - 1 and j = k. 
To tha t  aim, we will use the proper ty  (see, e.g., [18]) 

Cn ( ? - x ) = ( - l ) n + l C n ( ~ + x ) ,  n > 0 .  (3.6) 
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Using (3.6), one finds t ha t  

¢j+1((8 - -  j -~- r -~- k)h) = ( - 1 ) J C j + l ( ( 2 j  - k - r + 1 - s)h), 

so t h a t  for j = k -  1 or j -- k 

For j = k, one finds 

•jj-r,k 2 n-j+rWk 
---- - -  / '~ ~ j + l  

/0' = ( _ l ) j a ~  _ ~2 Cj+l((S - j + r + k)h) ds 

[ /0 ] = ( - 1 )  j a ; - n  2 C j + , ( ( 2 j - k - r + s )  ds 

2, 2j-k-r 

r~k-r'k = (--1) k [a~ -- .2 _-r+kl  k ~,k ~'k /'o ~k+l J : (--1) ~k+l 

while j = k - 1 results by using (2.5), (2.11), and L e m m a  1.3 in 

]~k-X-r,k (_1)k-1 [O~_1 _ t~2~0kr+k-2] k-1 
- - ( - -1)k-1 [~'_kl +t~2(~Okr+k--~Ok(r+2)+k)] 

= (--1) k-1 [Z~'_kl + 2(1 - cosO)  ~'k+l/Nr'k+l -- Z r+2'k+l~]k+l ]J 

/~r+l,k~ ] k = (--1) k-1 [/~'_k 1 + 2 ( 1 -  COSO)(~,k + ] j .  

This  comple tes  the proof  of L e m m a  3. | 

L e m m a  3.2 explains why, in some cases, the order  of a me thod  turns  out  to be higher t h a n  ex- 
pec ted  according to  (3.3). Consider,  e.g., the  case k = 2, e = 1, A0 = A1 = 1. T h e  corresponding 
implicit  me thod  is given by 

[ O - s i n O  2 ( s i n O - O c o s O )  . ] 
Y n + l - Y n - l = h [ o ' ~ - - ~ o s O ) ( f n - l + f n + l ) +  0(1 - cos0)  J n J .  (3.7) 

T h e  error constant ,  compu ted  according to (3.4), vanishes due to L e m m a  3.2. However,  se t t ing 
k = 3, A0 = A1 = 1, and A2 = 0, the  same (fourth order) me thod  is found and f rom (3.4), one 

finds t h a t  the error cons tant  is given by 

C5 - 2(1 - cos 0) ~ ~ /~ ' , 4+~ ,4  \ ~  ) 3 sin O -- O cos O -- 20 
= ( 3 8 )  

T h e  results (3.7) and (3.8) have a l ready been found earlier. Indeed,  in [15,16], they  have been 

found to  cons t i tu te  the modified Simpson rule. 

4. I M P L E M E N T A T I O N  O F  A B M  M E T H O D S  A S  P C - P A I R S  

Most  mode rn  predic tor-corrector  methods  for nonstiff  problems use Adams-Bash fo r th  me thods  
as predictors  and Adams-Moul ton  me thods  as correctors (the r = 1 and r = 0 cases of  the  
previous pa ragraph) .  One of the main  reasons in favour of this class of me thods  is t h a t  they  can 
be implemented  very efficiently as is explained by L a m b e r t  in [21]. In this section, we will have 
a closer look a t  the  implementa t ion  of the corresponding modified methods .  

However,  before discussing the implementa t ion  of ABM-methods ,  let us first of all look a t  the  
use of general  modified linear mul t i s tep  me thods  in P ( E C ) t ' E  1-t  mode  (t c {0, 1}), where  P, 
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E, and C stand for the application of the predictor, the evaluation of the right-hand side of the 
differential equation and the application of the corrector, respectively. 

Let 
k k-1 

P: 

C: 

then P(EC)UE 1-t mode gives 

P: 

Z a;~+j = h E b;s,,+j, 
j=0 j=0 

k k 

E ajyn+J = h E bjfn+j,  
j=o j=o 

(4.1) 

and 

~(=n+~)_ i~7~l m 

j=l 

X [itS2 ~y(p-1)(Xn) -[- /y(p+l)(Xn) ] ~- O(h'+2),  u = 0(1)# - 1, 

(4.3) 
where 3y~j is some value between Jy(x,+k) and J~)[n~. ] +k" 

It is then straightforward to show that if p* _> p (or p* < p and # > p - p*), the PC method 
and the corrector have the same order and the same principal local truncation error (PLTE), i.e., 
for i = l (1 )m 

~(~+~) ~t.l = %+1h.+~ [i~ ~(.-~)(~) + ~(.+,)(~)] + o (h .+~) - -  Y n + k  

k-1 k-1 
~[01 X-" ^*- M = h E b*g~-t], n+k ~ ~ ¢~jYn+j jJn+j 

j =o j =o 

:M : 
n+k , (4.2) 

k-1  k-1 
[u+l] a yM M [~-t] 

Yn+k + E  J , + j = h b k f ~ + k + h E b j f ~ + J  ' u = 0 ( 1 ) # - l ,  
j=o j=o 

El - t :  ~[t~] / . ["l "~ Jn+k = f ~Xn+k, Yn+k] ' if t = 0. 

In the above scheme (4.2), no distinction has been made between scalar problems or systems 
of equations. However, it should be understood that  when applying (4.2) to an m-dimensional 
system 

iy,= if(x, ~ , . . . ,  my), i = l ( 1 ) m ,  

not only the Yn+j and jrMn+j values have become vectors, but also the aj, a~, bj, and b~ values. 
Indeed, instead of starting with one parameter ~, we start with a set of m interpolation parameters 
~,  one for each of the m equations. To each of these parameters, one can then associate the linear 
difference operators i£:* and i£ given by 

i~*[z(x);h] w_ ~;.+i hp*+l [it~2z(p*-l'(x ) j-z(P*+l)(x)] -Jr 0 (hp*+2) , 

'C[z(.); hi = v.+lh.+l  [i.,z(.-1)(x) + .(.+,) (x)] + o (h.+'). 

Each of the i£:* has order p* and each of the i£ has order p. 

Making the localizing assumption that  " M Yn+j = Yn+j,j = 0(1)k - 1 and indicating by ~,+ka[~l the 
approximation to y at xn+k generated under this assumption, one finds for every component ~y, 
i = l ( 1 ) m  

iy(Xn+ k) -- 'Y[:;k = ~C;*-t-lhP*+I [ its2 iy(p*-I)(xn) ~- iy(p*+l)(xn)] "~- 0 (hp*+2) , 
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It thus becomes clear how to choose the interpolation parameters i~2 in order to raise the order 
of the method: if the PC-pair corresponding to i£. and i£ for i = l(1)m is applied in order to 
obtain an approximation for ~Yn+k, i = l(1)m where p* > p (or p* < p and # > p - p*), the 
choice 

4 / ~ 2  /Y(P+I) (Xn) 
~y(p_l)(xn ) (4.4) 

will raise the order of the method to p + 1. Again, we want to stress the fact that  the derivatives 
can be calculated in any knot point xn. If occasionally iy(xn)(P-1) ~ 0, i~2 will be attributed a 
very large (positive or negative) value. To prevent a significant loss of accuracy in the solution 
~Yn+a, a good strategy may be to set in to zero in that step, i.e., to use the known polynomial 
method. 

The condition p* _> p (or p* < p and # > p - p*) is essential for the choice (4.4). If this 
condition is not fulfilled, one finds that,  in general, a system of transcendental equations in J~, 
j = l(1)ra has to be solved. This situation should, therefore, be avoided. In the rest of this 
paper, we will always assume that  this is the case. Also, the choice (4.4) means that  each ia2 can 
be calculated from the knowledge of the component ~y and its derivatives in xn solely, i.e., only 
one component of the solution is of importance. Therefore, whenever possible we will drop the 
superscript in the notation for the rest of the article. 

If p* = p, the classical schemes allow an estimation for the PLTE by means of Milne's device. 
The modified schemes allow the same technique from 

C;+ lhp+ l  [H,2y(p-1)(Xn ) _}_ y(p-I-1)(Xn)] : y(Xn+k) _ ~[0] + 0 (h p+2) n+k 

and 
Cp+lhp+l  [t~2y(p-1)(Xn) + y (p+l ) (xn)]  : y (Xn+k)  _ ~[t~] + 0 (h  p+2) Yn+k 

one finds after subtraction and neglecting higher order terms that  

[ ] = Cp+lh p+I [ .2y(p-i)(x.)  + y(pT1)(Xn) j = W ~Yn+k -- .~n+k]'  PLTE 

with 
W - C p + I  (4.5) 

Cp+ 1 -- Cp+ 1 ' 

i.e., the Milne estimate is obtained from the same formula as in the classical ease. Since the 
choice (4.4) would mean that  this estimate is zero, a different choice for 42 will be needed. When 
Milne's device is used to perform local extrapolation (L) in a P(ECL)UE l - t ,  (t E {0, 1}), the 
choice 

t~ 2 = y(p+2) (Xn) (4.6) 
y(P)(x,~) 

is proposed, since C(p)L_=C(p+I) where p is the order of the corrector. 
P ( E C L ) U E I - t :  

k-1  k-1  
p: ,[ol + ~ * . [ ~ l  = h E b * ~ [ ~ - t ]  Yn+k L . . c~ jYn+j  3,tn+j , 

j=0 j=0 

(ECL)U: f[~ln+k = f(xn+k, ~n+kJ, 
k-1  k-1  

[~+ll ~ [#1 [vl ~ '~  h .¢ [~-tl  n+k + 2_.~ajyn+j = hbkf~+k + h A..,-~j,~+j , 
j=0 j=o 

y[V+l] = (1 + l ~ [ u + l ]  W. [°l , n+k "" ],~n+k -- ,~n+k 
. [ u l  El- t :  J,~+k¢iul = f(Xn+k,Un+kj,  

u = 0 ( 1 ) # -  1, 

ift----O. 

(4.7) 
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As was mentioned in the beginning of this section, the preceding algorithms can be written in 
a computationally convenient and economical form if the PC-pair is a modified ABM-method. 
Indeed, these methods, when expressed in backward difference form, possess simple and attractive 
structures which can be fully exploited in the framework of PC-methods. Consider, e.g., the 
PC-pair 

k-1 2(1 -- COS0)~ 
E / ~ 0 , k - l w i ¢  p* = k, C ; ,  +1 - b: O,k, P: Yn+l - Yn = h - i  - -  an,  
i=0 

k-1 2(1 - cos O) ~ E ,~l,k- 1 r-~ie C: y ~ + :  - y~ = h p~ v J ~ + l ,  p = k ,  Cp+:  - -~: 1,k. 

i=0 

Let V'l be defined as 

{V ifp M, p T t n + l ,  

V~fp = VZi r["l rill ,[•l , 
-- J n + l + : n + l - J n + l  p = n + l ,  

one can then, for instance, write the P(EC)"E :- t  algorithm as 

k - :  
p :  y[O]n+l = Y[n ~] + h E ~Oi'k-1 v i  finis-t]' 

i=0 

(EC)": rill [d 

k-1  
[~+11 yM y41,k-lvi ¢[.-t] 

Yn+l = + h E ~ i  t,,Jn+l , 
i=0 

f•.] [.] 
+1 = f (x~+ l ,  Yn+l), El-t :  

a = O ( 1 ) # -  1, (4.8) 

i f t  = O. 

The computational effort of this algorithm (computation and storage of V i ~[~,-t] i = O(1)k-  1 vJn+l , 
for every u E {0, 1 , . . . ,  k - 1}) can be reduced to the computation of just one such difference if 
we make use of the following lemma. 

LEMMA 4. For k >_ 2, 
k-1  

1. E ( ~ ; ' k - l V J f n + l - - ] ~ ;  - l ' k - l v j f n )  = ~'k-/'4r-l'k-ll ( v k f n + l  + 2 ( 1 - - c o s O ) V k - U f n ) '  

j=O 

k k -1  
V" ~r,kVj  ~ ~ F i r - l , k - l v J fn  = /~r-l,k ( v k + l / n + l  + 2(1 -- COSO)Vk-lfn ) . 2. Z.....~l,-*j Jn+l -- Z_...~I-,j k 
j=0  j=0  

PROOF. We rewrite the left-hand side of the first equation as S(V)fn+l  where 

k-1  

S(~) := E (~ ''-'Vj - ~ -''k-lVj(l - V)) 
j=O 

k-1  k -1  
r - l , k -1  j + l  = Z;" - :  - Z C : " - :  + E (@' -1  - Z : - ' " - I )  w + E Z} v , 

j = l  j=0  

so that for k _> 2, due to Lemma 1.3, Lemma 1.2, and Lemma 1.3, respectively, 

k-1  k -1  
S ( V )  --~ ,~: ,k-  1 _ ,1~ - l ' k - 1  -- ~..~ ,'-'j-l~'~Nlr-l'k-2~'TJ-- +i_..a ~ '~; - l ' k - l v j + l "  

j = l  j=O 
k-1  

f / r -  1,k- 1 k'TJ f4r- 1,k- 1 v7k = ~:,k-I __ fl:-l,k-I +2(1 --COSO) E(~J,k- 2 --~j,k-l]~,k_ I -- +~'k-I v 
j=l 
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=/?~-1,t¢-1 [2(1 - cosS)Vk-2(1  - V) + V t~] 
k - 1  

f rom which L e m m a  4.1 can be deduced. 

To prove the  second par t ,  one finds wi th  L e m m a  1.2 t ha t  

k k - 1  k - 1  
- = - tJj Jn+l  ~ . .¢~j  - -  ~n t~k Jn+l  ~¢- ~-~ ~ j  Jn+l  

j=o j=o 1=o 
~r, kr~k ,e = Pk v Jn+l  -[- 2(1 - c o s S ) ~  'k ( v k - 2 f n + l  -- v k - l f n + l  ) 

k -1  
( n r , k -  l v j  ,¢ r -  l , k -  l v j  

j = 0  

from which L e m m a  4.2 can be derived by means  of L e m m a  4.1 and L e m m a  1.3. ] 

Due to  L e m m a  4.1, one finds for k > 2, on subt rac t ing  the expression for • [0] f rom t h a t  for 
- -  b ' n + l  

~[1] t h a t  n + l  
b[1] ~ [01 hf~O, k - 1  [v7k ¢[l~-t] ] . 

n + l  = Y n + l  "]- ' ° t " k - 1  [ V 0 J n +  1 + 2(1 - COSS)Vk-2f[nl~-t] (4.9) 

x-Ti ~[~,-t] _ V i ~[~,-t] ¢[H ~[~-11 Also, since --V~n+l , - 1 J n + l  = ~n+l -- ¢n+1 , one finds due to  L e m m a  1.1 

• [ u - F 1 ]  a [u] + hglO,k-1 ({[u] ¢[u-11~ 
n+l = ~n+l '°t 'k-1 kJn+l  -- J,~+l ) , V = 0(1)# -- 1. (4.10) 

Clearly, the  implementa t ion  of equat ions (4.8) is equivalent  to  t ha t  of 

P :  

( E C ) ' :  

E l - t :  

k - 1  
~iOl = y~]  + h ~ n°'k- lX7 ~ ¢[ , - t ]  

n + l  "- Z._~ r"i - -  J n  , 
i = 0  

•[o] +1 = 

~[i] 
n + l  = 

f,[~'] _1_1 = 

•[u+l] n + l  

f,["] +1 ----- 

{x . [0} 
f k n + l , Y n + l ) ,  

~[0] hf~0,k-1 [wk ~[,-t] ] , n+l  + k-1 [ v 0 J n + l  + 2(1 -- cosS)Vk-2f[n~-t] 
["l f(Xn+l,Yn+ 0 , 

= 1(1)  - 1 ,  

f(x,+l,y[~l),  if t = 0. 

(4.11) 

I t  is assumed t h a t  the  back d a t a  Vif[n "-t}, i = 0(1)k - 1, have been stored.  To ca r ry  out  the  

sequence (4.11), one needs to compute  the  differences V k~[ ' - t ]  and V k ~[ , - t ]  and a value for 8 O , / n + l  / ~ - l , / n + l  

is necessary in order  to be able to  compute  the fl-values. The  differences needed can be ob ta ined  

f rom 
Vi+l~[~,-t] = Vi ~[t~-t] _ V~f[~-tl, i = 0(1)k - 1, 0 d n + l  0 J n + l  

and 
Vk ~ [ ~ , - t ]  = v k ¢ [ , - t ]  j_ ~[~,-t} ¢1o1 

p - l J n q - 1  0Jn-F1 -- . In- t -1 --  J n + l ,  

while a value for 8, i.e., ~ is due to  (4.4) given by 

~ = Y(k+l)(xn) 
y(k-1)(x,~)" 

Finally, to  be  ready  for the  next  step,  the back d a t a  can be upda ted  by comput ing  

V ~+l~t~'-t] W ~[~'-~] W f ~  -t] ,  i = O(1)k 2. , / n + l  = . / n + l  --  



r-Adams Methods 49 

In  an analogous way, the a lgor i thms corresponding to  P ( E C L ) " E  1-~ mode  (t E {0, 1}) can 
be described.  As is the  case with the  polynomial  ABM-schemes  when applied in P ( E C L ) ~ E  ~ -L  
mode ,  it tu rns  out  t h a t  P(k)(EC(a)L)UE ~-t -= P(~)(EC(~+~))~'E l - t ,  where  the  subscr ipt  denotes  

the  order  of  the  method• Indeed,  from (4.7), it turns  out  tha t  (with ~[0] , [0] Yn+l  ~ .Yn+l] 

[~,+I] ~[~'] = ( l + W ) \ v n + 1  -vn+~], v=O(1)#-l .  Yn+l -- yn+l 

Following the  same s t ra tegy  as the one t ha t  led to (4.9) and (4.10), one finds wi th  W = 
3l,k/(~O,k 1 k k z ~ k  - ~k' ) such t ha t  1 + W = ~k~0'k/~0'k-1/~'k-1 , t ha t  

~[1] o [o1 h3O, k [wk ~eiu-t] ] , n+l  = Vn+l ÷ k L~oJn+l  + 2(1 - cosO)Vk-2f[~ *'-tl 

~[u-t-1] ~ [v] hl30,k (f[u] re[u--1]'~ n+l --~ Yn+l ÷ k ~ n+l -- Jn+l  ] , // = 0(1)# -- 1. 

(4.12) 

(4.13) 

On the o ther  hand,  if a corrector  of order k + 1 is used, then  on account  of  L e m m a  4.2, one 

finds from (4.11) for the p = 0 case 

•[1] n + l  

k k -1  
, [Ol nl kwi  ¢[~,-t] = Un+l  ÷ h ~ i '  - -  J n + l  - -  h~r~zf~O'k-lvif[ lz- t ] jn  

i=0 i=0 

,[o] o,k [wk~[.-t] 2(1-cosO)Vk-'f~ u-t]] = ~ n + l  ÷ h30 L-0J~+l  + 

while again (4.13) is found for v = 0(1)# - 1, i.e., bo th  a lgor i thms use the same formulas.  

I f  Milne 's  device is also used to  per form step-size control, then  one also needs an expression 
for this es t imat ion  (denoted by T)  of  the PLTE.  Due to L e m m a  4.1 and L e m m a  4.3, one finds 

T n + l - -  ]'t/~l'k [ ~7k-lJn+l¢['-t] ÷ 2 ( 1 -  COS o ) ~ k - 2  f[~*-t]] . 

The  P(ECL)UE 1-t  mode,  t E {0, 1}, can thus be implemented  as follows: 

P:  

(ECL)U: 

k-1  
[0] --~ y[n ~1 ÷ h ~ f~O'k-l~'Ti f[/~-t] 

f~i - -  Jrt , Yn+ 1 
i=0 

fn °1 ( ' [°l +1 : f Xn+l ,¥n+l )  , 

[VTk ~[**- tl 2(1 un+l~[ll =Un+l~[0] + h 3 0 , k  1 - ° J n + l  ÷ _ 

f n Iv] ( x ° [v] +1 = f k n + l , Y n + l ) ,  

•[P"I- i] n+l 

E I - e .  e["] 
• Jn+l 

T: Tn+l 

cose)vk-.f .-,l], 

= vn+l + h3k' \Jn+i -- : n+ l  ) , 

/ l . ]  "~ = f ( X n + l , y n + l ) ,  if t = 0, 

hr~l'k [V k e[~'-t] 2(1 O)Vk-2 -t]] = ' ° . k  t . - 1 . n + l  + - c o s  y~[" . 

v = 1(1)/, - 1, 

(4.14) 

Now t h a t  we have shown tha t  the  computa t iona l  effort and s torage of the  differences can 
be reduced significantly, one m a y  wonder  wha t  computa t iona l  overhead is associated wi th  the  
c o m p u t a t i o n  of ~2. First  of all, an expression for ~2,  i = 1 (1)m has to  be derived by differentiat ion 
of the  differential sys tem of interest.  These  expressions are then  used to compute  one set  of  
3-values  in each knot  point  (in fact, only ~°~ i and --krq°'k have to  be recomputed  in each point) .  
Th is  means  tha t ,  in general,  k -  2 ÷ 2m values are needed, i.e., there  is no s torage  overhead when 
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applied to scalar equations with fixed k during the integration process. If k varies, special care 
has to be taken since for each k-considered different/3 r'k and fff,k values have to be used. k - 1  k 

To support  the theory, we consider the application of our methods on two popular problems. 

For bigger problems, analogous results can be obtained. As a first example, we will investigate 
the application of a P(k)(EC(k)L)U-mode to the problem 

y ' =  -my , y ( 0 ) - - 0 ,  (4.15) 

for which the exact solution is given by the elliptic sine function. In this example, we use 

m -- 0.25. This problem has already been discussed in [15] in the framework of explicit methods. 
Since local extrapolation is getting used, we take p > 2 in order to be able to a t t r ibute  a value 

2 given to n 2. If the current value tha t  is being computed is Yn+l, we at tr ibute to ~2 the value ~n 

by 
2 y(k+2) (x~) 

I~ n - -  y ( k ) ( X n  ) , ( 4 . 1 6 )  

where the higher order derivatives are re-expressed in terms of xn and y(xn)  by means of the 

differential equation in (4.15). One thus obtains 

1 + 14m + m 2 - 20m(1 + m ) y  2 + 24m2y~ k = 2, 
1 + m - 2m y  2 

1 + 14m + m2 _ 60 (1 + + 120 2yt k = 3, 
1 + m - 6my~ 

2 1 (4.17) 
1 + 14m + m 2 - 60m(1 + m)y~ + 120m2y 4 

×(1 + 135m + 135m 2 + m 3 

- m ( 1 8 2  + 868m + 182m2)yn 2 

+840m2(1 + m)y~ - 720m3y6), k = 4. 

With  these values for g~,2 the fl-coefficients are computed once and used throughout  the itera- 

tion. 
2 Indeed, one can approxi- One might argue that  there are more efficient ways to calculate ~n" 

mate  the derivatives in (4.16) by means of backward differences of f since the algorithm already 
needs these differences. However, there is a technical problem at the start  of the integration 
process since differences up to order k + 1 are needed and only differences up to order k - 1 can 

be calculated from the start ing values. Since we did not t ry to obtain a self-starting code, i.e., we 
did not consider the problem of how to obtain the necessary start ing values anyhow, we didn' t  

2 neither. follow this idea to calculate ~n 
The results are shown in Table 3 and Table 4. In Table 3, the differences y(x~+l)  - yn+l 

(denoted as Am if mixed interpolation is used and Ac for the classical methods) are shown for 
k = 2, 3 and 4 and p = 2 (upper value) and 3 (lower value) in different knot points for h = 0.1. 

In Table 4, the corresponding results are shown for h = 0.01. For both values of h, exact s tart ing 
values are used. The starting points are chosen such tha t  the first calculated y-value is located 

in x -- 0.6 in both cases. 
For the modified methods, the values of ~ are tabulated in the different knot points. Since they 

2 are based on the approximation of y, different values of a,~ are expected for different p-values. 
2 values are the same (to the accuracy shown). However, it turns out that  in most cases, the ~n 

Only if this is not the case, the two different values are tabulated. 
Most of the theoretical considerations can be observed from Table 3 and Table 4. Indeed, since 

the first calculated value for both tables is the same and since exact start ing values are used, 
order comparisons can be made at this point. One can, e.g., easily deduce from the results for 
both  h values that  the modified methods possess order k + 2. The polynomial methods,  on the 
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Table 3. Absolute errors produced by the modified (Am) and classical (Ac) k-step 
ABM-methods with stepsize h = 0.1 applied in P(ECL) t" mode for k = 2, 3 and 4 
and It = 2 and 3 to problem (4.15). Exact starting values are assumed; y(0.6) is the 
first calculated value. The notation (n) means 10 -n .  

X 

0.6 

0.8 

1.0 

1.2 

1.4 

z~ m 

8.041 
8.173 
4.757 
1.670 
8.276 

1.655 
1.025 

3.915 
9.683 

-2.244 

k = 2  

(7) 2.839 
(8) 
(6) 2.184 

(7) 
(6) 1.469 

(7) 
(5) 0.788 
(8) 
(6) 0.229 
(7) 0.228 

/x c 

-6.257 
-6.186 
-1.837 

-1.629 
-2.436 
-2.101 
-2.303 

- 1 . 9 4 9  

-1.489 
-1.290 

A m 

(6) -4.198 (8) 
(6) -7.655 (8) 
(5) 2.855 (7) 
(5) -2.498 (7) 
(5) 2.457 (6) 
(5) -5.162 (7) 
(5) 1.748 (5) 

(5) --1.811 (6) 
(5) 7.437 (4) 
(5) -4.552 (5) 

k = 3  

2 
~ n  

0.782 

-2.733 

-10.544 

-47.330 

-47.339 
71.817 
71.250 

Ac 

-1.948 (7) 
-2.417 (7) 

4.844 (7) 

8.374 (8) 
1.847 (6) 
9.602 (7) 

3.072 (6) 
1.688 (6) 
3.390 (6) 
1.718 (6) 

k - - 4  

Am ~ 

2.426 (9) 7.205 
1.504 (8) 

-4.206 (8) 5.158 
5.458 (8) 

-9.369 (8) 2.325 

9.466 (8) 
-1.657 (7) -2.563 

1.303 (7) 

-3.110 (7) -22.149 
1.992 (7) --22.148 

Ac 

2.086 (7) 
2.042 (7) 
5.180 (7) 
5.032 (7) 
5.384 (7) 
5.753 (7) 
2.538 (7) 
4.405 (7) 

-2 .807 (7) 
2.194 (7) 

Table 4. Absolute errors produced by the modified (Am) and classical (Ac) k-step 
ABM-methods with stepsize h = 0.01 applied in P(ECL) t' mode for k -- 2, 3 and 4 
and It = 2 and 3 to problem (4.15). Exact starting values are assumed; y(0.6) is the 
first calculated value. The notation (n) means 10 -n .  

X 

0.6 7.109 (12) 2.558 
1.090 (12) 

0.8 3.297 (10) 1.864 
2.329 (11) 

1.0 5.968 (10) 1.153 
4.193 (11) 

1.2 7.101 (10) 0.516 
4.985 (11) 

1.4 6.057 (10) 0.037 
4.197 (11) 

k = 2  k = 3  k = 4  

Am ~2 Zxc Am ~2 Ac Am ~ Ac 

-6 .443 (10) 
-6.415 (10) 
-1.159 (8) 
-1.146 (8) 
-1.700 (8) 
- 1 6 8 o  (8) 
-1 .623 (8) 
-1 .604 (8) 
-1.054 (8) 
--1.048 (8) 

-2.411 (14) -0.526 
-8.188 (14) 

5.843 (12) -5.354 
-1.708 (12) 

4.006 (11) -18.637 
-3.443 (12) 

5.213 (10) -392.547 
-1.143 (11) 

-5.693 (10) 41.906 
4.866 (12) 

8.576 (13) 
8.096 (13) 
6.241 (11) 
5.923 (11) 
1.571 (10) 

1.504 (10) 
2.190 (10) 
2.098 (10) 
2.022 (i0) 
1.942 (10) 

1.039 (15) 6.362 
2.136 (15) 

-2.615 (14) 4.010 

4.517 (14) 

-6.937 (14) 0.564 
8.149 (14) 

-1.375 (13) -7.073 
1.115 (13) 

-3.673 (13) --157.885 
2.250 (13) 

1.861 (13) 
1.862 (13) 
2.743 (12) 
2.766 (12) 
2.969 (12) 
3.063 (12) 
1.530 (12) 
1.745 (12) 

--4.204 (13) 
--4.087 (14) 

o t h e r  h a n d ,  a lways  have order  k + 1. Also, one  can  verify t h a t  the  # = 2 a n d  # = 3 cases possess  

t he  s a m e  order ,  which  aga in  conf i rms the  theory.  

Secondly,  some  i n t e r e s t i n g  p roper t i e s  can  be deduced  f rom th is  example .  F i r s t  of  all, i n i t i a l l y  

all modi f ied  m e t h o d s  p roduce  b e t t e r  resu l t s  t h a n  the  c o r r e s p o n d i n g  classical  ones  as was expec t ed  

by  t h e  theory.  However,  s ince t h e  so lu t ion  of p r o b l e m  (4.15) is far f rom a l inear  c o m b i n a t i o n  of  

2 is far f rom a c o n s t a n t  value.  I t  even  t u r n s  ou t  a s ine,  a cosine,  a n d  a p o l y n o m i a l  func t ion ,  ~n 

2 is a t t r i b u t e d  ve ry  large (posi t ive a n d  nega t ive)  values.  I t  can  be t h a t  for k = 3 a n d  k = 4, ~n 

seen  f rom Tab les  3 a n d  4 t h a t  in these  po in ts ,  t he  accuracy  a t t a i n e d  by  t he  modi f ied  m e t h o d s  

decreases  s ign i f i can t ly  due  to  these  ( too) large values.  

A r e a s o n a b l e  q u e s t i o n  is of  course:  w h a t  is the  c o m p u t a t i o n a l  cost  of  ou r  m e t h o d s  in  c o m p a r i s o n  

wi th  the i r  c lassical  c o u n t e r p a r t s ?  To answer  th i s  ques t ion ,  we have i n c o r p o r a t e d  Tab l e  5. Here tc 

a n d  tm d e n o t e  t h e  t i me s  in  (sec/100000)  t h a t  are needed  to  proceed wi th  k = 2 in  P ( E C L ) ~ ' - m o d e  

f rom x0 to  Xg = 1.4 where  x0 is chosen in  such a way t h a t  the  first ca l cu la t ed  y -va lue  is loca ted  

in  x = 0.6 (ac tua l ly ,  t i me s  were m e a s u r e d  in  sec /100  on  a 486-66 M Hz  P C  a n d  t he  p r o g r a m  was 

execu t ed  1000 t imes) .  For  k = 2, we o b t a i n e d  from Tab le  3 a n d  Tab le  4 t h a t  t~ 2 is smal l ,  which  

m e a n s  t h a t  the  modi f ied  coefficients can  easi ly  be  w r i t t e n  in  Taylor-ser ies  e x p a n s i o n s  where  t e r m s  

up  to  t~ 4 are kept .  As expec ted ,  the  execu t ion  of the  modif ied  m e t h o d  is slower, b u t  t he  ga in  in  

a c c u r a c y  c lear ly  c o m p e n s a t e s  th is  d i s advan t age  for h igh accuracies .  
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Table 5. Absolute errors (A) and execution times (t) (in sec/100.000) in x = 1.4 
produced by the modified (Am) and classical (Ac) k-step ABM-methods for various 
stepsizes applied in P(ECL) u mode for k = 2 and 3 and tt --- 2 to problem (4.15). 
The notation (n) means 10 -n .  

h 

0.100 -1.489(5) 
0.050 -1.519(6) 
0.025 -1.733(7) 

0.020 -8.722(8) 
0.010 -1.054(8) 
0.005 -1.295(9) 

~ = 2  

Ac tc Am trn 

208 I. 177 (5) 

269 5.679 (7) 
390 3.098 (8) 
450 1.234 (8) 

747 7.292 (10) 
1351 4.430 (11) 

h 

0.100 -1.290(5) 

0.050 -1.450(6) 
0.025 -1.703(7) 

0.020 -8.608(8) 
0.010 -1.048(8) 
0.005 -1.292(9) 

242 
335 
516 
612 

1054 

1955 

# = 3  

Ac tc Am tm 

231 1.878(6) 

308 1.121(7) 
472 6.688(9) 
549 2.710{9) 
945 1.655(10) 

1736 1.021(11) 

269 
373 

593 
703 

1252 
2345 

As  a second  example ,  we cons ider  t h e  p o p u l a r  t es t  p r o b l e m  

z"  + z = O.O01e ix, z(0)  = 1, z ' (0 )  = 0 .9995i ,  (4.18) 

for wh ich  t h e  exac t  so lu t i on  is g iven  by  z(x)  = (1 - 0 .0005ix)e  ix. 

T h i s  sys t em,  k n o w n  as the  St ie fe l -Bet t i s  p rob lem,  has  b e e n  used  ear l ier  several  t i m e s  to  s t u d y  

m e t h o d s  des igned  for p r o b l e m s  w i t h  n e a r l y  per iod ic  so lu t ions  (see, e.g., [3,13,16]). 

To  solve th i s  p rob l em,  we wr i t e  (4.18) as 

½' = - ~  + 0.001 cosz, 
3yp =4  y, 

4y, = _ 3y + 0.001 s in  x, 

~(0) = 1, 
~(0) = 0, 
3y(0) = 0, 

4y(0) = 0.9995, 

(4.19) 

for wh ich  t he  exac t  so lu t ion  is g iven  by  

ly(x)  = cos x + 0.0005x s in  x, 

2y(z) = - 0 . 9 9 9 5  sin x + 0.0005x cos x, 

3y(x) = s in x - 0 .0005x cos x, 

4y(x) = 0.9995 cos x + 0.0005x s in  x. 

(4.20) 

T h e  va lues  a t t r i b u t e d  to  it~ 2 accord ing  to  (4.6) for 

k = 2 :  

k = 2, 3 a n d  4 are 

1~2 = ~ g ~  - 0.002 cos x ~  

~ g ~  - 0.001 cos xn '  

2~2 = 2Yn + 0.002 sin xn  

2yn + 0.001 sin x , '  

3/~2 = 3Yrt - 0.002 sin xn 

3yn - 0.001 sin x , '  

4~2 = 4Yn - 0.002 cos xn  

lyn _ 0.001 cos x n '  

(4.21) 
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ln2 = 2gn + 0.002 sin xn 

~Yn + 0.001 sin x n '  

2~2 = ~yn - 0 . 0 0 3  c o s  x ~  

k = 3 : lyn - 0.002 cos x n '  

3/~2 = 4yn -- 0.002 COSX n 

4gn - 0.001 cos x,~' 

4~2 = ag~ _ 0.003 sin x,~ 

ag n - 0.002 sin x n '  

in 2 = ly n -- 0.003 COS Xn 

byn - 0.002 cos x n '  

2t~2 = 2~n Jr- 0.003 sin Xn 

k = 4 : 2Yn + 0.002 sin x ~ '  

an 2 = ayn - 0.003 sin xn 

~Yn - 0.002 sin Xn' 

4n 2 = 4yn - 0.003 cos x~ 

4y~ _ 0.002 cos x~" 

(4.22) 

(4.23) 

We applied the P(k)(EC(k)L) u algori thm to problem (4.19) for k = 2 and k = 3 with # = 2. 

The  results  are shown in Table 6, where the errors in Iz(407r)l are listed. The  results are produced 

wi th  exact  s ta r t ing  values. Each t ime x0 was set to 7r. 

~/4 
n/8 

r/16 

Table 6. Absolute errors in Iz(40~)l produced by the modified (Am) and classical 
(Ac) k-step ABM-methods for various stepsizes applied in P(ECL)U mode for k = 2 
and 3 and p = 2 to problem (4.18). The column Af corresponds to our modified 
method with fixed ~ values. The notation (n) means 10 -n.  

k = 2  k = 3  

Am Af Ac Am Af Ac 

1.220 (3) 1.362 (4) 9.716 (1) -5.329 (4) 1.077 (4) -1.953 (0) 
7.894 (5) 1.500 (5) -6.036 (2) -3.804 (6) 9.130 (7) -1.500 (1) 

4.513 (6) 1.047 (6) -3.131 (2) -2.610 (7) 9.939 (8) -5.315 (3) 

For bo th  k-values, 3 results are given. As in previous tables, Ac s tands  for the classical case, 

Am for the modified one. It  is obvious from the above results tha t  the modified methods  give 

a considerable gain due to the choice (4.6) with p = k. As it tu rns  out  tha t  this  results in 

in 2 ~ 0.999 for all values of x, we have also performed our modified scheme where each in2 is 

given this fixed value 0.999. The results obta ined  (see columns labelled A f)  even produce be t t e r  

results t h a n  with variable ig2. 

From the above, we may conclude tha t  our modified methods  can be implemented  in a 

predictor-corrector  pair wi thout  any problem. So far however, these methods  have only been 

s tudied in fixed-step implementat ions .  The s tudy  of variable step a n d / o r  variable order imple- 

men ta t ions  has not  been performed yet. Developing a code in which all of this is included is 

beyond the scope of this paper. These mat ters  remain  challenges for future work. 
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