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Abstract—Mobile applications are evolving towards support
for advanced interactivity and resource-demanding multimedia
features. Mobile platforms are however struggling to cope with
these new innovative application concepts, such as Augmented
Reality, due to the inherent limitations on their available re-
sources, such as CPU, memory and battery power. Offloading
resource-intensive calculations to nearby infrastructure or de-
vices, also known as cloudlets, has emerged as a viable alternative
in offering interactive and resource-intensive applications to
mobile users.

This concept of resource sharing provides promising op-
portunities for collaborative scenarios in which not only data
processing, but also the data itself are shared between multiple
users. In this paper, we investigate the challenges posed by
offloading collaborative mobile applications. We describe the
problem of autonomous management of collaborative cloudlets
and propose two heuristic algorithms, Simulated Annealing and
Steepest Descent, in order to solve this optimization problem.
We observe that these heuristics yield an effectiveness of more
than 90% for execution times that are three orders of magnitude
lower when compared to a guaranteed-optimal approach.

I. INTRODUCTION

Mobile devices were among the fastest growing market
segments in recent years, and with billions of smartphones
and tablets to be sold in 2013 [1], there are no signs of this
trend changing. The popularity of these devices has several
reasons: not only are they portable and always-connected,
but there are also hundreds of thousands of easy-to-install
applications. These mobile applications have recently been
evolving to highly interactive and media-rich experiences,
such as immersive 3D games and Augmented Reality (AR).
However, although recent advances in mobile processors and
battery technology, mobile devices are struggling to cope with
such applications due to their inherently limited resources.
With the advent of wearable computers such as smart glasses
and watches, resource limitations will continue to impact
application capabilities.

To cope with these limitations, offloading (parts of) the
application to infrastructure in the network becomes a ne-
cessity. Offloading to a distant cloud is however infeasible
for highly interactive applications due to the large network
delay. To offload such interactive applications, the concept
op cyber foraging [2] was introduced, where a mobile user
can benefit from resources available in his near vicinity, for
example computing infrastructure co-located with the wireless
access point. In this set-up, the user should not experience any
significant network delay.

Cyber foraging can be realised using a cloudlet [3], a
personalized Virtual Machine (VM) on a nearby, trusted
server. The VM-based cloudlet concept has recently evolved to
component-based cloudlets consisting of a group of computing
nodes (both fixed and mobile) that are sharing resources with
one another. Software components on the mobile device can
then be redeployed at runtime to other nodes in the cloudlet
according to some optimization criteria, such as the execution
time [4], [5], energy consumption [6], and/or throughput [7].

Collaborative applications are also growing in number.
These are applications involving multiple users interacting
with each other, often in a real-time fashion. Niantic Labs’
Ingress [8] is an example of a collaborative AR game with
over half a million active users. The resource-sharing concept
of component-based cloudlets offers a promising opportunity
for collaborative applications: besides only sharing computing
resources, users may also share data such as processing results
and context information. For example, in a collaborative game,
users could share the same virtual space and interact with the
same virtual objects.

However, no existing cloudlet or cyber foraging system
exploits this opportunity. In [9], we extend a component-based
cloudlet middleware to a collaborative cloudlet by providing
support for collaboration from the middleware. The middle-
ware and collaboration are described in Sections III and IV.
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An important aspect of a cloudlet system is autonomous
management, the capability to decide at runtime how to allo-
cate software components and configure collaboration. In this
paper we propose two heuristic allocation algorithms, based on
Simulated Annealing (SA) and Steepest Descent (SD), capable
of minimizing the average device usage in the cloudlet while
taking into account all necessary state synchronization. These
algorithms are described in detail in Section V whereas in
Section VI they are compared to an optimal approach.

II. RELATED WORK

Some of the first cyber foraging systems to be introduced,
such as Spectra [10] and Chroma [11], required the application
developer to pre-install routines on devices offering offloading.
This approach quickly becomes infeasible for multiple appli-
cations, so runtime code migration becomes a requirement for
realistic scenarios.

More recent cyber foraging and cloudlet middleware can
be largely separated in VM-based and component-based ap-
proaches. Systems using VMs “copy” entire applications from
mobile devices to nearby infrastructure. Either the mobile
application is executed entirely in the dedicated VM, such as
in the VM-based cloudlets in [12] and [13] or the decision is
made on a per-routine basis, per example in CloneCloud [14]
by using profiling and code analysis. COMET [15] uses a
Distributed Shared Memory (DSM) approach which allows
for easy migration of individual application threads between
VMs.

Recently, more component-based systems have emerged.
Using components instead of VMs provides more flexibility
for application redeployment. These systems can be differenti-
ated by the type of the components they use. In some systems,
these are the routines themselves, such as in MAUI [6] and
Scavenger [4]. The components can be larger, such as Open
Services Gateway initiative (OSGi) bundles in AlfredO [16]
and AIOLOS [5]. Weblets, RESTful services, are used by
Zhang et al. [17]. An in-depth comparison of cyber foraging
and other mobile cloud computing systems is given in [18].

Collaborative applications, also called groupware, are appli-
cations where multiple users work together in a shared context
or state to accomplish a common goal. These applications face
additional challenges when executed in a mobile environment
(e.g. dynamically joining and leaving users). MoCa [19] is
a middleware system specifically focused on mobile collabo-
rative applications and uses a static client-server application
architecture. In [20], it is however argued that a peer-to-peer
architecture is more suited for mobile collaborative applica-
tions in order to remove the need for centralized infrastructure
and improve flexibility.

The algorithms used to allocate software components are
often based on well-known graph-partitioning algorithms [21],
although other techniques for runtime optimization have been
used successfully, such as Naive Bayesian Learning in [17].
Autonomously managing collaborative cloudlets, however,
poses additional challenges, as we have to correctly decide
on how to configure collaboration.

Fig. 1. General architecture of the cloudlet framework presented in [22].

III. CLOUDLET MIDDLEWARE

We adopt the component-based cloudlet framework pro-
posed in [22], [23] to create a collaborative cloudlet middle-
ware. This cloudlet framework already provides the necessary
functionality to offload software components from user devices
to nearby computing infrastructure.

The general architecture of the framework is shown in
Fig. 1. A cloudlet application is split up into several loosely-
coupled software components. The components are managed
by an Execution Environment (EE), which will connect them
according to their offered and required services. Each appli-
cation instance runs in its own EE. The EE can start, stop
and reconnect components at runtime, which allows migrating
of individual components between EEs (further called solitary
offloading). Method calls between components deployed on
different EEs are intercepted by proxies in order to execute
them as Remote Procedure Calls (RPCs).

Every device in the cloudlet is represented as a node
and runs a single Node Agent (NA). The NA starts, stops
and manages the EEs on the device and collects monitoring
information about the device. A single node in the cloudlet
(e.g. the node with the greatest computing capacity) is selected
to run a Cloudlet Agent (CA). This CA is responsible for
autonomously managing the entire cloudlet and will aggregate
the monitoring information from the different NAs and EEs
in order to make decisions on when and where it needs to
offload components. These decisions are made by an allocation
algorithm, which will try to optimize a (combination of)
metric(s) of the cloudlet, such as the average CPU usage of
all nodes.

This middleware is extended with support for collaboration
in Section IV by providing two mechanisms, state synchro-
nization and shared offloading. However, these mechanisms
introduce additional degrees of freedom to configure the
cloudlet and to allocate components. In Section V, algorithms
are discussed that are able to determine suitable component
allocations and collaboration mechanisms.



IV. COLLABORATION

Collaboration between multiple users requires the exchange
of information between different application instances. While
this can be done by exchanging messages on the application
level, it can be a tedious task for the application developer
to implement message distribution and handle arrival and
departure of users correctly. For this reason, collaboration
is preferably supported by the middleware framework. Ex-
changing information between application instances can be
abstracted to sharing some common state between application
instances.

We extend the component-based cloudlet discussed in Sec-
tion III with mechanisms to have a consistent state between
multiple application instances. We propose two such mecha-
nisms: shared offloading and state synchronization. To benefit
from these mechanisms, the application developer only has
to define the state of a component and how state updates of
multiple sources can be merged in a consistent way.

A. Shared offloading

The cloudlet middleware allows us to dynamically change
component references, even across application instances. This
means a single component instance can easily be shared
between multiple users by changing the required references.
Sharing a component instance, or shared offloading, can be
seen as an extension to solitary offloading, where now multiple
users offload to the same component instance. Shared offload-
ing is performed in three steps. First, a shared instance is
created on the target node. Next, all other component instances
push their current state to this shared instance where these
states can be merged using an application- or component-
specific method. Finally all references are changed to point
to the newly-created shared instance. During offloading, all
method calls to components are blocked until the process is
finished to ensure no state information is lost.

As multiple application instances are now using the same
component instance, and hence the same component state,
collaboration can be guaranteed. With no further exchange of
information necessary after the initial set-up, shared offloading
can be seen as a passive mechanism. As multiple nodes
are now referring to the same component instance, this also
implies that on all except one node, RPCs will need to be
performed. Depending on the size of the argument and result
values, this may cause significant traffic. Also, for some com-
ponents, shared offloading is not feasible due to strict timing
constraints or not possible due to hardware dependencies. To
still guarantee a consistent state between instances of these
types of components, a second mechanism is proposed in the
form of state synchronization.

B. State synchronization

With the state synchronization mechanism, multiple com-
ponent instances of the same type, but allocated on different
nodes in the cloudlet, can still share their state by actively
exchanging messages. This means that component instances
can remain allocated on user devices, method calls can be

executed locally, but users can still collaborate. However, as
state changes can now happen in a distributed, asynchronous
way, precautions need to be taken on how to distribute state
updates.

We adopt a client-server synchronization mechanism, where
one instance of the component type to be synchronized, is
selected as the synchronization server. This instance then
becomes responsible for correctly distributing the state up-
dates of other components and resolving any conflicts. Other
instances can notify the server at any time of a state update
that needs to be propagated using a service provided by the
middleware. The server uses a component-specific method to
process these updates (e.g. buffer and merge them). Finally, the
corrected state update will be propagated to all clients where
their local state will be adjusted accordingly. The EE is able to
transparently connect the clients with their respective servers.
Techniques such as incremental updates and revision histories
are not offered by the framework at this stage, but can be
implemented on top of the state synchronization mechanism
by the application developer.

V. ALLOCATION ALGORITHMS

The collaborative cloudlets previously introduced offer var-
ious possibilities for configuring collaboration and component
deployment. In addition to offloading individual software
components, a suitable collaboration mechanism needs to be
selected for components that need to share state. In the case
of shared offloading, a decision needs to be made on the
allocation of the shared instance and in the case of state
synchronization, on the server instance.

However, due to changes in the available devices in the
cloudlet and the load produced by applications, the config-
uration of the cloudlet should be adaptable at runtime. This
makes manual configuration typically infeasible and requires
an autonomous control loop. A well-known approach is to
use a Monitor-Analyze-Plan-Execute (MAPE) control loop as
proposed by [24]. Here, monitoring information is periodically
fed to an allocation algorithm which will decide which actions
need to be taken to optimize the cloudlet.

A. Cloudlet model

The allocation algorithm can be seen as solving an opti-
mization problem, where a certain objective function is (in this
case) minimized. This optimization problem can be formulated
using a mathematical model of the collaborative cloudlet. We
extend the cloudlet model presented in [23] by incorporating
aspects of collaboration. There are three main aspects of the
cloudlet model: the infrastructure, the components and their
allocation, and the observed behaviour.

The infrastructure of the cloudlet consists of the devices, or
computing nodes, and the network. The computing nodes can
be grouped in a set D, with every node d ∈ D having two
properties: the speed speedd at which it can process a load on a
single core and the number of cores #coresd. The assumption
is made that the network consists of a single shared medium,
so the network can be represented by its capacity bandwidth.



Note that while actual node speed and network capacity may
change over time, we only consider the current value at the
moment of optimization.

The application structure consists of a number of component
instances c. All components in the cloudlet are grouped in the
component set C. To track the current allocation of individual
components, we define Xcd as an allocation matrix.

Xcd =

{
1 if c is allocated on d
0 otherwise

(1)

Using Xcd, we define Hij as being 1 if and only if
components ci and cj are allocated on different nodes. This
implies that any communication between these components
has to go over the network.

Hij = 1−
∑
d∈D

Xcid ·Xcjd (2)

In order to incorporate shared offloading into the model, we
define an additional variable Yij to be 1 if every call to ci is
actually performed by cj , in other words if ci is currently being
substituted by cj . After shared offloading a set components C ′

to a shared instance cshared, it holds that Yij = 1 ⇔ cj =
cshared,∀ci ∈ C ′.

Yij =

{
1 if ci is substituted by cj
0 otherwise

(3)

The behaviour is modelled using the concept of sequences.
A sequence is a succession of method calls between com-
ponent instances and follows a specific path in the control
flow graph of the application. Sequences are assumed to be
executed in a single thread. Each sequence s ∈ S consists
of a number of successive method calls mscicj between
components ci and cj and occurs with a certain frequency
freqs. Every method call has a certain load loadmscicj

that
needs to be processed, an argument argmscicj

and result
resmscicj

size and occurs #callsmscicj
times in the sequence

(e.g. in a loop).

B. Objective

Based on the cloudlet model described above, an objective
function can be defined that needs to be optimized. We choose
the objective function to be the average relative usage of all
the nodes in the cloudlet.

f = usageavg (4)

By minimizing this objective function, the load on the
mobile devices can be reduced while not overloading the high-
capacity nodes (to provide a safety margin). For the same
relative usage on a mobile and high-capacity node, the high-
capacity node is able to process more load as it has a higher
speed and/or more cores.

The average relative usage usageavg is calculated by aver-
aging the relative usage usaged of all the nodes in the cloudlet.

usageavg =

∑
d∈D usaged

#D
(5)

The relative usage of a single node usaged can be found by
dividing the imposed load (per unit of time) by the maximum
load the node can process, which is the number of cores times
the speed of a single core.

usaged =
loadd

speedd ·#coresd
(6)

The total load on a single node is simply the sum of the
load imposed by each observed sequence on the node.

loadd =
∑
s∈S

loadsd (7)

The load per unit of time of a sequence s on a specific node
d can be found by checking, for every method call mscicj in
the sequence, where the actual component that processes the
call is allocated. Only when that component is deployed on d
is the generated load taken into account.

loadsd =
∑
ci∈C

∑
cj∈C

∑
ck∈C

Xckd · Yjk

· loadmscicj
·#callsmscicj

· freqs (8)

C. Constraints

Besides the objective we want to minimize, there are certain
constraints that need to be taken into account while solving
the optimization problem. These constraints reflect the limited
capacity of the cloudlet infrastructure. A first constraint is that
the total load imposed on any node cannot exceed its total
capacity.

loadd ≤speedd ·#coresd,∀d ∈ D (9)

The load generated by a single sequence is assumed to be
processed in a single-threaded fashion, as it is a succession
of methods in time. This means that the load of any single
sequence may not exceed the core speed of any node in the
cloudlet.

loadsd ≤speedd,∀s ∈ S, ∀d ∈ D (10)

Finally, the network must be able to cope with the generated
traffic, i.e. it must fit within the available bandwidth.

traffic ≤bandwidth (11)

The amount of generated traffic can be calculated by sum-
ming the argument and result sizes of each observed RPC (i.e.
∀mscicj : Hij = 1, taking substitutions into account).



traffic =
∑
s∈S

∑
ci∈C

∑
cj∈C

∑
ck∈C

∑
cl∈C

Hkl · Yik · Yjl

·
(
argmscicj

+ resmscicj

)
·#callsmscicj

· freqs (12)

These constraints are incorporated into the optimization
problem as additional terms in the objective function. This
gives the following, complete objective function f .

f = usageavg

+ α ·W (traffic, bandwidth)

+ β ·
∑
d∈D

W (loadd, speedd ·#coresd)

+ γ ·
∑
d∈D

∑
s∈S

W (loadsd, speedd) (13)

The coefficients α, β and γ express the constraint penalties
and are chosen such that the constraints are not violated in
almost all cases (in our experiments α = β = γ = 100). The
function W expresses the relative violation of the constraints
and is defined as follows.

W (a, b) =

{
a−b
b if a > b

0 otherwise
(14)

D. Heuristic algorithms

The goal of an allocation algorithm is to improve the current
allocation of the cloudlet by defining a set of actions to
be performed. In a collaborative cloudlet which supports the
mechanisms discussed in Section IV, valid actions belong
to either one of the following types. If these actions are
performed on a valid configuration of the cloudlet, i.e. all
components are deployed and state sharing is possible, the
result will also be a valid configuration.
Solitary offloading This type of action will migrate a single

component instance c on d to another node d′ in the
cloudlet. This boils down to updating X: Xcd ← 0,
Xcd′ ← 1. These actions are only possible for offloadable
components that do not require state sharing.

Shared offloading When multiple instances ci of a compo-
nent type exist, shared offloading will replace them with
a single, shared instance cshared. This requires updating
Y : Ycici ← 0, Ycicshared

← 1. Shared offloading may
also change the allocation of the shared instance. This
will update X: Xcsharedd ← 0, Xcsharedd′ ← 1. Shared
offloading is only possible for offloadable components
that require state sharing.

Switch server This will change the server for a component
type that is currently using state synchronization to
collaborate. State synchronization is also used as the
default collaboration mechanism, and can be used for any
component that requires state sharing, whether it can be

Algorithm 1 Steepest Descent
Current← Initial
repeat

Kmax ← ∅
Gmax ← 0
for ∀K ∈ allActions (Current) do

G← gain (K,Current)
if G > Gmax then

Gmax ← G
Kmax ← K

end if
end for
if Kmax 6= ∅ then
Current← performAction (Kmax, Current)

end if
until the stop criterion is met
return Current

offloaded or not. Switching the server requires updating
the sequences representing the synchronization messages.

Shared2Sync Actions of this type will switch between shar-
ing an instance and using state synchronization as the
collaboration mechanism. The shared instance will be-
come the new synchronization server.

Sync2Shared These actions switch from using state syn-
chronization for collaboration, to sharing a component
instance. The synchronization server is chosen as the
shared instance.

Suitable allocation algorithms are ones that can be used
in an operational cloudlet, meaning that the execution time
of the algorithm needs to be limited and be in relation to
the period of the control loop. If we make the assumption
of a cloudlet where every component is offloadable to every
node, the total number of valid actions scales approximately as
O
(
#D#C

)
, where #D is the number of nodes in the cloudlet

and #C is the total number of components. When looking
at how the number of valid actions scales exponentially with
the number of components, a brute-force, exhaustive approach
is infeasible for runtime optimization. Even more intelligent
optimal approaches such as Quadratic Programming (QP) do
not scale well enough with the infrastructure and application
size.

Heuristic allocation algorithms are hence needed for runtime
optimization of the cloudlet. The goal is that, while the
heuristic is not guaranteed to find the optimal solution, it is
able to provide a sufficient approximation in limited execution
time and scales better with problem size. In the following
sections two well-known heuristics, Steepest Descent (SD) and
Simulated Annealing (SA), are described and their application
in autonomous management of collaborative cloudlets is evalu-
ated. Both are search heuristics that explore the solution space
by performing actions of the types described above.

1) Steepest Descent: A first search heuristic, SD, is shown
in Algorithm 1. SD is a deterministic algorithm that will imme-
diately converge to a minimum following the steepest decline
available. After initialisation with the current deployment, the
gain of all valid actions is determined and the action with the



Algorithm 2 Simulated Annealing
Current← Initial
Best← Initial
T ← startTemperature(Initial)
L← epochLength(Initial)
repeat

for L times do
K ← randomAction (Current)
G← gain (K,Current)
if accepted with probability exp

(
G
T

)
then

Current← performAction (K,Current)
if f (Current) < f (Best) then
Best← Current

end if
end if

end for
Decrease T

until the stop criterion is met
return Best

highest positive gain is accepted. The gain is defined as the
difference in the objective function by performing the action.
This process repeats itself until no further actions with a
positive gain are found or a maximum number of actions, given
by the iteration threshold parameter, have been accepted. SD is
easily parallelizable, as the gain of every action during a single
iteration can be calculated independently. In our experiments,
however, we use a single-threaded implementation of the
algorithm in order to make no assumption on the presence
of a multi-core CA.

2) Simulated Annealing: A major disadvantage of SD is
the high risk of converging to a non-global minimum, as only
a limited part of the solution space is explored. To address
this issue, an algorithm that performs a random instead of
deterministic search can be used.

SA is is an action-based, intelligent random search that
uses a control factor called the temperature. The procedure
is shown in Algorithm 2. SA is initialised using the current
deployment of the cloudlet, after which a starting temperature
and an epoch length are determined. The algorithm then
advances through a number of epochs between which the
temperature is gradually decreased. During each epoch, a fixed
number of actions are randomly selected. A selected action is
accepted with probability exp (G/T ), where G is the gain in
the objective function by executing the action and T is the
current temperature. Actions with a positive gain are always
accepted, but actions with negative gain also have a chance of
being accepted depending on the temperature. By initialising
with a high temperature, a large part of the solution space can
be explored. Decreasing the temperature allows the algorithm
to converge. In our implementation, the stop criterion depends
on the fraction of actions that are accepted during an epoch.
The different parameters of SA are described below and are
determined in Section VI-B.
Initial fraction accepted actions with loss The initial tem-

perature is selected so that, during the first epoch, a
given expected fraction of actions with a negative gain
is accepted.

Temperature coefficient The temperature decreases geomet-
rically between epochs, i.e. the temperature is multiplied
with a temperature coefficient which is < 1.

Epoch coefficient The number of selected actions during
each epoch is proportional with the total number of valid
actions, scaled with an epoch coefficient.

Fraction accepted actions threshold When the fraction of
actions that got accepted during an epoch falls below a
threshold, a stopcounter is increased. This stopcounter is
reset when a globally better solution is found.

Stop threshold When the stopcounter itself exceeds the stop
threshold, the algorithm terminates.

VI. RESULTS

The heuristic allocation algorithms are compared to an
Exhaustive (EX) allocation algorithm with regards to their
effectiveness (i.e. how well they can approximate the solution
of the EX algorithm) and execution times. The EX algorithm is
guaranteed to be optimal and will perform a brute-force search
for the global minimum by testing every reachable allocation
in the solution space. An allocation is reachable when it is the
result of applying a set of valid actions on the initial allocation.
To evaluate the algorithms in a number of different scenarios, a
set of random input problems is generated. All measurements
were performed on a Intel Core i5-3230M 2.6 GHz quad-core
processor.

A. Problem generation

We generated a total of 500 different cloudlet configura-
tions. The cloudlets consist of two mobile users and a single
fixed node. Node speeds are exponentially distributed, the
number of cores uniformly. Each user runs an application
instance consisting of 8 components. These components have
a 50% chance of being offloadable, and also a 50% chance of
needing to share their state. A total of 16 observed sequences
are generated, which consist of a geometrically distributed
number of methods and have an exponentially distributed
frequency. Method load, argument and result size are also
exponentially distributed.

B. Parameter selection

In order to compare the heuristic allocation algorithms to
the EX algorithm, their parameters settings first need to be
optimized. The goal is to simultaneously maximize their effec-
tiveness and minimize their execution time. The effectiveness
is calculated as

eSA,SD =

∑
p∈problems gainSA,SD (p) /gainEX (p)

#problems
. (15)

Note that all input problems are generated in such a way
that gainEX (p) > 0.



TABLE I
PARAMETERS SETTINGS OF THE DIFFERENT CONFIGURATIONS OF THE SA

ALGORITHM.

Conf. Init. fr. Temp. Epoch Fr. acc. Stop

1 0.9 0.5 1 0.5 1
2 0.9 0.5 1 0.5 4
3 0.9 0.2 1 0.5 4
4 0.05 0.2 1 0.5 4
5 0.05 0.2 0.5 0.5 4
6 0.05 0.2 0.5 0.1 4
7 0.05 0.2 0.5 0.1 8
8 0.05 0.2 0.33 0.1 8

1) Simulated Annealing: The SA algorithm has 5 different
parameters as described in V-D2. In order to efficiently find
suitable parameters, an iterative optimization approach is used.
Starting from a base configuration, a single parameter is varied
at a time. When done for all parameters, the parameter is se-
lected that yields either the highest increase in effectiveness for
the lowest increase in execution time or the highest decrease
in execution time for the lowest decrease is effectiveness.
The process is repeated until no significant improvement is
possible.

This resulted in the 8 configurations listed in Table I. As SA
is a stochastic algorithm, each configuration is tested 10 times.
The average effectiveness and execution time as well as their
standard deviation are shown in Fig. 2. The base configuration,
configuration 1, performs reasonably well with an average
effectiveness of 81.19% for an average execution time of
169 ms. After optimization of the parameters an effectiveness
of 98.37% is achieved for an execution time of 133 ms with
configuration 8. In further experiments, configuration 8 of the
SA algorithm is used.

2) Steepest Descent: The SD algorithm only has a single
parameter to select: the iteration threshold. Fig. 3 shows
how the average effectiveness and execution time of the SD
algorithm vary for different values of this threshold. For an
iteration threshold of 8, we obtain an effectiveness of 92.88%
for an execution time of 161 ms. This value is chosen as it
most closely approximates the chosen SA configuration.

C. Comparison

The EX, SA and SD algorithms are compared with respect
to different metrics. The SA algorithm is again executed 10
times and all metrics shown are averages. Fig.4 shows the
execution times of the three algorithms for each of the input
problems, sorted by the execution time of the EX algorithm.
The average execution time for SA is 131 ms, which is
slightly faster than SD which has an average execution time
of 161 ms. Both are much faster than EX, which on average
needs 176 seconds. As expected, both heuristic algorithms find
a solution much faster than the EX algorithm, up to four orders
of magnitude for the most complex problems. We see that SA
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Fig. 2. Execution times and effectiveness for the different parameters
configurations of the SA algorithm. Average and standard deviation of 10
iterations is shown.
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Fig. 3. Execution times and effectiveness for different values of the iteration
threshold of the SD algorithm.

and SD both scale better with problem size as well, having a
lower average gradient than EX.

An important metric is the number of actions an allocation
algorithm suggests. While the optimization problem does not
incorporate an explicit cost to each action, the actual cost
can be a significant (e.g. components may be temporary
unavailable during migration). Fig. 5 shows the number of
actions each algorithm suggests for each problem, sorted by
the number of actions of the EX algorithm. EX suggests an
average of 6.6 actions. We observe that the number of actions
of the SD algorithm is always equal (for simpler problems) or
less (for more complex problems) than the number suggested
by the EX algorithm, with an average of 5.2 actions. Due
to the iteration threshold, the maximum number of actions
of the SD algorithm is limited to 8. For the SA algorithm,
we see that it sometimes proposes more actions than the EX
algorithm, which is the result of its random nature. With an
average of 5.8 actions however, it suggests almost one action
less. This implies that the possible remaining 1% increase in
effectiveness of SA requires, on average, that the number of
actions to be performed increases with 1 as well.

The relative gain for each problem and algorithm is show
in Fig. 6. The gains of the SA algorithm are closer to the
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Fig. 4. Execution times of each allocation algorithm for all problems.
Problems are sorted by execution time of the EX algorithm.
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Fig. 5. Number of actions proposed by each allocation algorithm for all
problems. Problems are sorted by number of actions proposed by the EX
algorithm.

optimal ones than the gains obtained by the SD approach. This
is to be expected as SA has a higher average effectiveness. On
average, EX yields a relative gain of 18.86%, 0.35% more than
SA (18.51%) and 0.93% more than SD (17.58%).

Finally we look at the relative gain obtained per action
for each algorithm, which can be seen in Fig. 7. SD obtains
the highest average gain per action with 3.59%, but this is
expected as the algorithm only selects the actions that result
in the highest gain at any given time. The difference with SA is
however small, which has an average of 3.43% gain per action.
With the gain per action of the EX approach being even lower
at 3.22%, this again confirms that the additional gains of the
optimal algorithm require relatively many actions. Compared
to SA, the 1.89% increase in gain of the EX algorithm requires
12.47% additional actions.

VII. CONCLUSION

In this paper we presented a collaborative cloudlet middle-
ware as an extension of a component-based cloudlet system
with two collaboration mechanisms, shared offloading and
state synchronization. We describe two heuristic algorithms for
runtime optimization, Simulated Annealing (SA) and Steepest
Descent (SD), and after fine-tuning their parameters, compared
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Fig. 6. Relative gain achieved by each allocation algorithm for all problems.
Problems are sorted by relative gain achieved by the EX algorithm.
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Fig. 7. Relative gain per action achieved by each allocation algorithm for all
problems. Problems are sorted by relative gain per action achieved by the EX
algorithm.

them to an optimal approach with regards to their execution
times, obtained gains and suggested number of actions.

Not only do SA and SD solve the optimization problem
with more than 90% effectiveness with execution times that are
three orders of magnitude lower that the exhaustive approach,
they are able to find a solution with fewer required actions.
When comparing SA with SD, we observe that while SD
results in fewer actions, SA is able to find a solution slightly
faster and with a gain much closer to the optimum.

In order to further improve the autonomous management
of collaborative cloudlets, the optimization problem should
be extended to include the cost of performing the suggested
actions. Moreover, the algorithms should be evaluated for
larger problem size involving dozens of users and hundreds
of application components. The SD approach can be further
optimized by using a parallelized implementation. While this
will not improve the effectiveness of the algorithm, it will
further reduce the execution time on a multi-core CA.
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