Semiconductor-metal transition in thin VO₂ films grown by ozone based atomic layer deposition

Geert Rampelberg¹, Marc Schaekers², Koen Martens², Qi Xie¹, Davy Deduytsche¹, Bob De Schutter¹, Nicolas Blasco³, Jorge Kittl², Christophe Detavernier¹

¹ Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium ² IMEC, Kapeldreef 75, B-3001 Leuven, Belgium ³ Air Liquide Electronics, Tour Kupka C - 14 rue Hoche, 92039, Paris La défense, France

Geert.RampelbergUGent.be

Vanadium dioxide (VO₂) has the interesting feature that it undergoes a reversible semiconductor-metal transition (SMT) when the temperature is varied near its transition temperature at 68°C.¹ The variation in optical constants makes VO₂ useful as a coating material for e.g. thermochromic windows,² while the associated change in resistivity could be interesting for applications in microelectronics, e.g. for resistive switches and memories.³ Due to aggressive scaling and increasing integration complexity, atomic layer deposition (ALD) is gaining importance for depositing oxides in microelectronics. However, attempts to deposit VO₂ by ALD result in most cases in the undesirable V₂O₅.

In the present work, we demonstrate the growth of VO₂ by using Tetrakis[EthylMethylAmino]Vanadium and ozone in an ALD process at only 150°C. XPS reveals a 4+ oxidation state for the vanadium, related to VO₂. Films deposited on SiO₂ are amorphous, but during a thermal treatment in inert gas at 450°C VO₂(R) is formed as the first and only crystalline phase. The semiconductor-metal transition has been observed both with in-situ X-ray diffraction and resistivity measurements. Near a temperature of 67°C, the crystal structure changes from VO₂(M1) below the transition temperature to VO₂(R) above with a hysteresis of 12°C. Correlated to this phase change, the resistivity varies over more than 2 orders of magnitude.

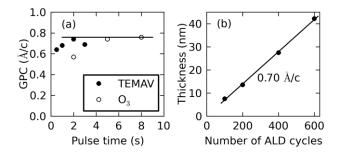


Fig. 1. ALD characteristics for the process TEMAV – O_3 at 150°C: (a) Growth per cycle versus exposure times for TEMAV with a fixed O_3 exposure of 5s (filled symbols) and for O_3 with a fixed TEMAV exposure of 2s (open symbols); (b) Thickness of the deposited films as a function of the number of ALD cycles.

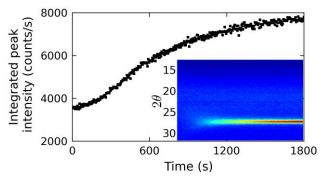


Fig. 2. Integrated intensity for the diffraction peak of the $VO_2(R)$ 110 plane during an isothermal anneal of 30 minutes at 450°C in He for a film of 42nm. The inset shows the in-situ XRD measurement from which the peak intensity was integrated.

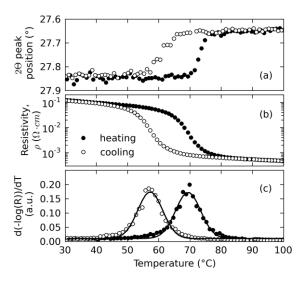


Fig. 3. Semiconductor-metal transition as observed during a thermal cycle between 30 and 100°C, with fixed heating and cooling rate of 0.1°C/s: (a) in-situ XRD, showing the change in crystal structure, (b) the correlated change in resistivity, and (c) a Gaussian curve fit to d(-log(R))/dT for the analysis of the resistivity.

This work has been accepted for publication in Applied Physics Letters.

- ¹ F. J. Morin, Phys. Rev. Lett., **3**, 1 (1959).
- ² I.P. Parkin and T. D. Manning, J. Chem. Educ., **83**, 3 (2006).
- ³ M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S. Soo Kim and B. H. Park, Adv. Mater., **19**, 3919-3923 (2007).