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Abstract—Due to the need for fast optimization procedures,
higher insight in machine physics, etc., complex analytical models
have gained a lot of importance in recent years. However, the
more accurate an analytical model, the higher its computational
time. This work studies the time and spatial harmonic content of
diametrically wound PMSMs. Thereby contributing to the under-
standing of these machines and the reduction of the computational
time of analytical models based on harmonic representations.

I. I NTRODUCTION

In the context of a trend towards electrical machines with
higher energy efficiency and higher power density, electromag-
netical modeling of electrical machines is very important.
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Fig. 1. Geometry and subdomains of an example machine withp = 2

The models presented in literature can be categorized as
analytical or finite element models. Mostly analytical mod-
els are preferred when insight in the machines physics or
computational time is important. In an effort to maximize the
accuracy of these models, the subdomain modeling technique
has recently been used by various authors [1]–[5].
This technique divides the machine in a number of sub-
domains. In these domains a differential equation for the
magnetic vector or scalar potential can be solved. The solutions
in the different subdomains are written as Fourier series over
space and, possibly, over time as well. The equations for the
vector potential in the different subdomains are then linked
by imposing physical boundary conditions. These boundary

conditions define the integration constants, introduced when
solving the differential equations.
Although the subdomain modeling technique can be used to
accurately take into account the slotting effect [1]–[3] and/or
the effect of induced currents [3], [4], its complexity also
implies higher computational time. The computational time
of subdomain analytical models is mainly determined by the
number of integration constants that have to be calculated.
The number of integration constants, in turn, is determined
by the machines geometry and the number of space and time
harmonic combinations that have to be taken into account.
This work aims at reducing the amount of integration con-
stants that have to be calculated and thereby at lowering the
computational time. This is done by studying the harmonic
content of the machines magnetic field. Although the findings
are generally valid, the study is based on a model that was pre-
sented by the authors in [3]. This model was built to compute
the magnetic field in slotted Permanent Magnet Synchronous
Machines (PMSMs) with a Shielding Cylinder (SC). The latter
is a conductive sleeve wrapped around the magnets to reduce
the overall rotor losses at high-speed operation [4], [6], [7].
The model has proven to accurately take into account both the
slotting effect and the reaction field of the eddy-currents in the
SC.
Note that the presented work is limited to diametrically wound
machines.

II. 2D ANALYTICAL SUBDOMAIN MODEL OF A SLOTTED
PMSM WITH A SC

The goal of this section is to briefly discus the model
presented in [3]. Based on Maxwells equations and the consti-
tutive relations, a differential equation for the magneticvector
potential (A) is premised:

−∆A + µσ
∂A
∂t

= µJext +∇× Brem (1)

Where Jext is an externally imposed current density,Brem
stands for the remanent induction,µ is the permeability andσ
the conductivity.
To enable solving (1), the machine’s geometry is divided
in a number of subdomains, as shown in Figure 1 for a
diametrically wound machine with 2 pole pairs (p) and 1 slot
per pole per phase (q). The different subdomains are referred
to by an indexν,ν = 1 stands for the magnet subdomain, 2
for the shielding cylinder and 3 for the air gap. Every slot is
a separate subdomain, represented by an indexν = 4i, with
i the slot number(i = 1...N). The different subdomains are
linked by imposing physical boundary conditions. Considering
conservation of the magnetic flux and Ampére’s law, these
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boundary conditions can be written as (2a) and (2b) respec-
tively.

A(ν) = A(ν+1) (2a)

n̂ ×

(

H(ν)
− H(ν+1)

)

= K (ν) (2b)

Where n̂ is the unit vector along the normal direction,H is
the magnetic field strength andK (ν) the current density on the
boundary.
In [3], a cylindrical system(r, ϕ, z), fixed to the rotor, is
applied to formulate a solution for (1) in every subdomain.
It is assumed that the vector potential only has az component
and only depends onr, ϕ and t. This implies:

A(ν) = A(ν)
z (r, ϕ, t) (3)

For the sake of simplicity the subscriptz is disregarded in
the following. The vector potential can be written as a Fourier
series over space and time. In [3] expressions (4a) and (4b)
are found for the vector potential in subdomains1 till 3 and
4i respectively.

A(ν)(r, ϕ, t) = (4a)
∞
∑

n=−∞

∞
∑

k=−∞

A
(ν)
k,n(r)e

j(kϕ+(k−n)Ωt+kϕ0)

A(4i)(r, ϕ, t) = (4b)
∞
∑

n=−∞

∞
∑

l=−∞

A
(4i)
l,n (r)ej(

lπ
δ
(ϕ−δi)+( lπ

δ
−n)Ωt+ lπ

δ
ϕ0)

Where:

A
(ν)
k,n(r) =

(

U
(ν)
k,nf

(ν)
k (r) + V

(ν)
k,n g

(ν)
k (r)

)

(5a)

A
(4i)
l,n (r) = U

(4i)
l,n fl(r) (5b)

In the above,k and l are spatial harmonic orders andn is
the time harmonic order.Ω is the mechanical pulsation of the
machine andϕ0 is the initial angular position of the rotor.
U

(ν)
k,n, V (ν)

k,n andU (4i)
l,n are the integration constants, introduced

when solving (1). Lastly,δ is the slot opening angle andδi is
the starting angle of the ith slot:

δi = δ1 + (i− 1)
2π

N
(6)

Based on the solution for the vector potential, derived quan-
tities such as the magnetic induction, no-load voltage, torque
and torque ripple, can be calculated.
The integration constants are defined by the boundary con-
ditions presented in (2). The fundamental period over time
is constant throughout the machine. This implies that the
calculation of the integration constant can be done separately
for every n. This is not the case for the spatial harmonic
orders. In subdomains1-3, the fundamental period over space
is 2π radians. In the slots, the fundamental spatial period is2δ
radians. This means that for everyn the boundary conditions
define a system that includes all the spatial harmonics for
every integration constant. As shown in [3], if the number
of considered spatial and time harmonic orders ishk, hl

and hn respectively, a total ofhn systems with a size of
5(1 + 2hk) + N(1 + hl) by 5(1 + 2hk) + N(1 + hl) have
to be solved.

III. H ARMONIC STUDY

The vector potential equation presented in (4a) regards
every harmonic combination with a spatial period equaling
a multiple of 2π radians and a period over time which is a
multiple of 2π

Ω radians. However, not every of these harmonic
combinations will be present in an actual machine. Conse-
quently, their associated integration constants will be zero. In
this section, the non-zero harmonic fields are identified anda
dependency between the integration constants in differentslots
is proven. This will reduce the amount of integration constants
that have to be calculated, thereby reducing the computational
time.

A. Exponential Fourier series

The source terms, i.e. the current density in the slots
and the remanent magnetic induction in the magnets, are
assumed to be real. Tis implies that the value of the vector
potential is real at every instance of time and in every point
of space. Therefore, the integration constants corresponding
to the harmonic combination(k, n) have to be the complex
conjugate of the constants corresponding to(−k,−n).

U
(ν)
k,n =

(

U
(ν)
−k,−n

)

∗

(7a)

V
(ν)
k,n =

(

V
(ν)
−k,−n

)

∗

(7b)

U
(4i)
l,n =

(

U
(4i)
−l,−n

)

∗

(7c)

This halves the amount of integration constant that have to be
calculated. Note that the fields corresponding with(k, n) and
(−k,−n) have the same rotational speed and direction.

B. Source terms

The differential equation (1) contains two source terms,
Brem and Jext. Corresponding with the magnets and the ex-
ternally imposed current density in the slots respectively. As
mentioned above the integration constants can be calculated
separately for every time harmonic order. This implies that,
if the source terms corresponding to a certain time harmonic
ordern are zero, all of the integration constants corresponding
to n are zero as well. The source terms and can be written as
(8a) and (8b) respectively.

Brem =

∞
∑

n=−∞

∞
∑

k=−∞

Brem,k,ne
j(kϕ+(k−n)Ωt+kϕ0) (8a)

Jext =

∞
∑

n=−∞

∞
∑

l=−∞

Jext,l,ne
j( lπ

δ
(ϕ−δi)+( lπ

δ
−n)Ωt+ lπ

δ
ϕ0)

(8b)

In conventional machines, where the magnets are not damaged,
the remanent flux density is symmetrical over half a spatial
period. This period being2π

p
. This can only be true if there

are no even spatial harmonics. Since remanent flux density
in the magnets does not vary in time with respect to the
rotor,Brem,k,n will only differ from zero if k = n. This implies
thatBrem,k,n will only differ from zero if n can be rewritten
asp(2ṅ+ 1), with ṅ an integer.
If a balanced system is premised, a similar reasoning can be
made for Jext,l,n. The current density will be symmetrical



over half a period in time, implying that only time harmonic
orders that can be rewritten asp(2ṅ+1) will result in nonzero
source terms. Harmonic combinations which’ time harmonic
order cannot be rewritten asp(2ṅ+1) will not be present in a
machine with balanced source terms. Therefore, the integration
constants related to such combinations will be zero.

C. Periodicity over time

A further reduction of the integration constants that have
to be calculated can be achieved by regarding the field’s
fundamental period over time.
If Tm is the mechanical time period of the machine andq is
the number of slots per pole per phase, the magnetic field in
subdomains 1-3 has a fundamental period over time ofqTm

N
seconds. The current density in sloti lags the current density
in slot i+q with 2π

2m electrical radians. Mechanically the rotor
covers these radians inqTm

N
seconds:

Ω
qTm

N
=

2πq

2mpq
=

2π

2mp
(9)

A point of the rotor will thus experience the same armature
reaction afterqTm

N
seconds. Since the magnet source term is

time-independent from the rotor point of view, the complete
source term has a fundamental period ofqTm

N
seconds with

respect to the rotor. Moreover, the rotor will also experience the
same geometry when rotated over a multiple of the slot pitch.
If the source term and geometry have a time period ofqTm

N
seconds with respect to the rotor, the magnetic field will have
the same period over time when referred to the rotor coordinate
system. This has to be true for every harmonic combination.
Indeed, an alternative harmonic combination can result in the
same period over time(k − n = k′ − n′), but the difference
in time harmonic order implies a different source term. For
ν = 1-3, this implies:

A
(ν)
k,n(r, ϕ, t0) = A

(ν)
k,n

(

r, ϕ, t0 +
qTm

N

)

(10)

Considering (4a), this implies:

A
(ν)
k,n(r)e

j(kϕ+(k−n)Ωt0+kϕ0) =

A
(ν)
k,n(r)e

j(kϕ+(k−n)Ω(t0+ qTm
N )+kϕ0)

(11)

And thus:

(k − n)Ωt0 = (k − n)Ω

(

t0 +
qTm

N

)

+ c2π (12)

With c an integer and sinceΩTm = 2π:

k − n =
cN

q
= c2mp (13)

Equation (13) imposes a requirement onk, the spatial har-
monic orders that do not fulfill this requirement will not be
present in a diametrically wound machine.
Analogously as in the above, the source terms and geometry
experienced by sloti at t = t0 equal the source terms and
geometry experienced by sloti + q at t = t0 + qTm

N
. This

implies:

A(4i)(r, ϕ, t0) = A(4i)

(

r, ϕ, t0 +
qTm

N

)

(14)

As in the above, this has to be true for every harmonic
combination separately. Applying (4b), it can be written that:

U
(4i)
l,n fl(r)e

j( lπ
δ
(ϕ−δi)+( lπ

δ
−n)Ωt0+

lπ
δ
ϕ0) =

U
(4(i+q))
l,n fl(r)e

j( lπ
δ
(ϕ−δi+q)+( lπ

δ
−n)Ω(t0+ qTm

N )+ lπ
δ
ϕ0)

(15)
When applying (6), this yields a relation between the integra-
tion constants in slotsi and i+ q.

U
(4i)
l,n = U

(4(i+q))
l,n e−j 2π

2mp (16)

This implies that for every spatial and time harmonic combi-
nation only q instead ofN integration constants have to be
calculated.

IV. CONCLUSION

By studying the source terms and the machines time peri-
odicity, the spatial and time harmonic contents of diametrically
wound PMSMs are determined. It is shown that only harmonic
orders satisfying a specific set of requirements will be present
in the machine. This information is useful when studying
harmonic related phenomena such as PWM losses. In this
work the link with the computational time of an analytical
subdomain model is laid. It is shown that a great reduction
in the amount of boundary condition equations, and thus
in computational time, is realized when only the actually
present harmonic orders are regarded. Moreover, a dependency
between different integration constants further reduces the
computational time.
Although this work focusses on the model presented in [3],
the findings are applicable in every model that uses a Fourier
representation of the magnetic potential (either scalar orvec-
torial).
The presented study only regards diametrically wound ma-
chines. However, a lot of PMSM are equipped with concen-
trated windings. It would thus be interesting to extend the work
presented in this paper to such machines in future work.
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