UNIVERSITEIT
GENT

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open

Access.

This item is the archived peer-reviewed author-version of:
User-friendly Configuration of Smart Environments
Simon Mayer, Nadine Inhelder, Ruben Verborgh, and Rik Van de Walle

In: International Conference on Pervasive Computing and Communications Demonstrations, 2014.

To refer to or to cite this work, please use the citation to the published version:

Mayer, S., Inhelder, N., Verborgh, R., and Van de Walle, R. (2014). User-friendly Configuration of
Smart Environments. International Conference on Pervasive Computing and Communications

Demonstrations



User-friendly Configuration of Smart Environments

Simon Mayer*, Nadine Inhelder*, Ruben Verborgh!, and Rik Van de Walle'
*Institute for Pervasive Computing, ETH Zurich, Switzerland
Email: simon.mayer@inf.ethz.ch
TMultimedia Lab, Ghent University — iMinds, Ghent, Belgium
Email: ruben.verborgh@ugent.be

Abstract—The configuration of smart homes represents a
difficult task for end-users. We propose a goal-driven approach to
this challenge, where users express their needs using a graphical
configuration environment. Our system then uses semantic de-
scriptions of devices in the user’s surroundings to derive a plan
to reach the desired situation. We are able to satisfy complex
demands using only first-order logic, which makes this system
flexible yet fast. The focus of this paper is to demonstrate how to
achieve high usability of the proposed system without burdening
users with the underlying semantic technologies. Our initial demo
supports setting the ambient temperature, alarms, and media
playback, but the use of semantics allows to extend the system
with many different kinds of services in a decentralized way.

I. INTRODUCTION

Despite a grand effort by academia and industry to bring
the vision of the smart home to life, and although the necessary
home automation and communication technologies have been
available for some time, smart homes have not yet been widely
adopted [1], [2]. This adoption failure seems to a large extent
due to the inflexibility and poor manageability of current
solutions in the home automation domain [1], [3], [4].

In this paper, we discuss a novel mechanism that can
compose heterogeneous services in smart homes to yield
physical mashups. Our main objective is to facilitate the
integration of services for end-users by adopting a goal-driven
approach where users are merely required to state which
properties their smart environment should have. From such
a statement, a reasoning component in the system determines
whether the currently available services can be used to reach
the user’s goal, and which concrete user actions (in this case,
HTTP requests to different services) are required to reach it. By
executing these requests, the user then modifies his environment
to reflect the conditions specified in his goal.

Figure 1 illustrates a concrete use case of the system: an
application that runs on a tablet computer or smartphone can
be used to specify the user’s preferences — for instance with
respect to their comfort temperature — and negotiates with
smart devices in the user’s surroundings to implement these
preferences. In the course of this negotiation, the application
is supported by a semantic reasoner that transparently creates
service mashups. For instance, to play songs of a specific
music genre at the user’s current location, multiple services
must cooperate: an indoor localization system is used to
locate the user and discover a media player in the user’s
proximity; another service is responsible for finding playable
audio files of songs that correspond to the given genre; finally,
the discovered media player must be configured to play these
files. We want applications such as this to operate successfully

Fig. 1.

Users can modify their smart environment using an application that
runs on a tablet or smartphone. In this case, the application gives feedback
about whether it was successful in matching the user’s preferences with respect
to the ambient temperature, audio playback, and an ambient alarm (mock-up).

in arbitrary environments including users’ private homes, office
environments, and even public places. In an industrial context,
manufacturing systems could for instance be automatically
reconfigured when producing small batch sizes, or machines
could adjust to support their current operator [5]. We also
imagine that similar systems could be applied in medical
environments, for instance to support doctors during clinical
diagnosis by automatically adjusting monitor systems.

However, because of the underlying semantics that our
system requires, it is potentially hard to use for end-users who
are required to be syntactically and semantically precise when
formulating goal states of their environment. Therefore, after
a brief overview of how we use semantics to configure smart
environments in the next section, we discuss two techniques to
mitigate this problem by facilitating the formulation of goals
for end-users: In Section III, we present an integration of the
system with a visual programming language that constrains
users to modeling only specific properties that are supported
by their current smart environment. The second mechanism,
which we propose in Section IV, aims to reduce the burden on
the end-user by extracting goal templates from services present
in the user’s environment and having the user simply select an
appropriate goal, rather than writing it himself.

II. SEMANTICS-ASSISTED SERVICE COMPOSITION IN
SMART ENVIRONMENTS

To enable the automatic composition of services provided by
devices in a smart environment and the execution of mashups



that are derived in this way, we need to communicate in a
machine-readable way what functionality a service provides
and how to invoke it. However, because all services we consider
feature Web APIs and because their protocol semantics are
therefore already specified by HTTP, we only need to embed
information about a service’s high-level domain semantics and

link that data to its Web API. To do this, we use RESTdesc [6].

A RESTdesc description captures the functionality of a service
by relating its preconditions to its postconditions through a
first-order logic rule. Services advertise descriptions using a
describedby relation in the Link header' as part of their
responses to HTTP GET and OPTIONS requests. Given such
descriptions, a semantic reasoner can infer which individual
services have to be invoked to achieve higher-level goals within
service mashups, and which concrete HTTP requests a client
must send to do this.

RESTdesc goals are expressed in Notation3 (N3), a superset
of RDF that adds support for quantification and is grounded in
first-order logic. RESTdesc therefore works well to describe
services that do not induce states or state changes such as, for
instance, a converter service. However, to support situations
that involve states — which are very common in use cases
that involve real-world physical objects (e.g., a room having
a specified ambient temperature) — we needed to extend the
system by adding an explicit state handling mechanism. In the
extended system, services can express that they induce state
transitions by using a publicly available states ontology>.

As a concrete example of how the system works, we assume
that a user wishes to set the ambient temperature at a specific
location to 23°C. To communicate this desire, the user would
need to formulate the following goal:

:temp23 a ex:Temperature;

1

2 ex:hasValue "23";

3 ex:hasUnit "Celsius".
4
5

?state a st:State; log:includes
6 { :0ffice ex:hasTemperature :temp23. }.

The first three lines define the temp23 object, which
includes the value of the desired temperature and also specifies
that this value is given in degrees Celsius. The rest of the goal
description makes use of that entity to describe the desired
state of the object Office.

To find out how to set the temperature, the client contacts a
reasoner®, which can either run locally on the client or remotely
(to additionally support resource-constrained clients). Given
the URLs of individual services in a smart environment, this
reasoner can find their RESTdesc descriptions by following the
links within the Link header fields of their responses to HTTP
OPTIONS requests and will create a local service descriptions
catalog. When a client now asks how a given goal can be
reached, the reasoner is invoked with all descriptions from the
catalog and the user’s goal, and will construct a path from the
current state to the goal state. If such a path exists, the reasoner
returns a description of the necessary HTTP requests, which
can then be executed by the client to modify his environment
according to the specified goal.

Ihttp://tools.ietf.org/html/rfc5988
Zhttp://purl.org/restdesc/states

3We use the Euler Yap Engine (EYE), available at http:/eulersharp.

sourceforge.net/

.
]
=

i

Fil

23°C (@]

Fig. 2. The ClickScript interface allows users to create goals using an
intuitive graphical programming abstraction. To do this, a user selects entities
that abstract from specific conditions within the desired state of his smart
environment and connects them to input data, where colors correspond to
different data types.

III. CREATION OF USER GOALS BY END-USERS

To make use of the proposed service composition mecha-
nism, end-users need to be able to formulate semantic goals
that describe their preferences and are correct with respect to
syntax and semantics. Because we cannot assume that users
are familiar with semantic technologies, this step is hard to
accomplish for users, so supporting mechanisms are required.
Ideally, such a support system would go beyond assisting users
with the goal syntax and actively guide the goal formulation
process, for instance with respect to the concrete ontologies
that are used within goals.

As a first step to facilitate the process of formulating goals
for end-users, we integrated the system with ClickScript*, a
visual programming tool that provides an abstraction layer
on top of the semantic goal descriptions. Figure 2 shows the
editing view of ClickScript where a user sets up the desired
configuration of his smart environment. The first step is to
create a new room entity and to connect it to the corresponding
room identifier (in this case, Of fice). Next, the user models
his desired state of this room by adding components which
represent different aspects of that state: the note icon represents
media playback, the thermometer icon stands for the ambient
temperature (i.e., the ex:hasTemperature property in the
goal shown in the previous section), and the alarm clock icon
is used to model ambient alarms. Finally, the user can infer
the correct data types of the components’ input parameters
(for instance, the concrete temperature value) from the colors
of the component inputs. A user’s task thus only consists of
dragging the desired elements to the editing view, connecting
the matching input and output types, and entering the parameter
values.

When satisfied with the configuration of his smart environ-
ment, the user can choose among multiple options of how the
created model should be processed by the system by connecting
one of multiple components to the output connector of the room
entity. The user’s first option is to output the goal textually on
the screen by connecting the “Target” component (this situation
is shown in Figure 2). Alternatively, the system can provide a
human-readable description of the HTTP requests that are to

“http://clickscript.ch


http://tools.ietf.org/html/rfc5988
http://purl.org/restdesc/states
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://clickscript.ch

be executed. Finally, the user can choose to have ClickScript
itself execute these requests, and thereby directly modify his
smart environment to match the modeled goal state.

ClickScript does not only parse syntactically correct goals
from modeled environments, but also constrains the user to
specific services that smart environments can provide: the
current prototype implementation supports setting the ambient
temperature and ambient alarms, as well as configuring media
playback. However, the graphical editor can easily be extended
with further abstractions, for instance for managing the room

ventilation, or for enabling users to configure ambient displays.

According to our own and others’ experience, the ClickScript
tool is intuitive to use even for people without any programming
know-how [7].

IV. AUTOMATIC CREATION OF USER GOALS

In the previous section, we demonstrated that ClickScript
allows users to formulate goals from given templates. However,
it can also derive components of user goals at runtime in a fully
automatic way, based on the available services in the user’s
surroundings, e.g., the fact that the environment should have
a specific temperature or that a media player causes a media
file to be played. This mechanism thus removes the necessity
to have an expert create new components for the ClickScript
interface. To enable it, the reasoner automatically generates
a list of potential goals from the RESTdesc descriptions of
services that are present in the environment, and presents this
list to the end-user. Specifically, our system derives a potential
user goal from each postcondition of discoverable RESTdesc
documents.

Because these documents are attached to services that are
provided by specific devices, this mechanism allows us to
use a smart device itself as a proxy for all mashups that
involve a goal state which corresponds to a postcondition of this
device’s description. In other words, it is possible to use object
recognition software (in the way described in [8]) on the user’s
handheld device to recognize smart devices and immediately
display potential actions that they can perform on behalf of
the user. Figure 3 illustrates this situation: by recognizing
the projector, the system can find out that this device could
display an image stored on the user’s tablet. Alternatively, the
system can unobtrusively propose a mashup with a third-party
image editing service to convert the image to grayscale before
displaying.

V. CONCLUSION

In this paper, we presented a novel approach to the
composition of services that are offered by physical things
in smart environments. In our system, a user formulates a goal
to specify the desired state of his environment which is used
by a semantic reasoner to deduce the HTTP requests necessary
to reach that goal. From our perspective, using semantic
technologies to deduce service mashups represents a much
more flexible alternative to the process-driven composition
of services: because the services are combined at runtime,
the system can flexibly react to individual services becoming
unavailable by finding alternative paths that also serve to reach
the user’s goal. Furthermore, the reasoning process could also
take into account more information about the user context, or

Fig. 3.
goals from RESTdesc descriptions, a projector is used as a proxy for service
mashups that it can be part of. In this case, the projector offers to display an
image stored on the tablet in two different — automatically generated — ways.

Using image recognition software and automatic deduction of user

his preferences, to derive mashups that are even better suited
for a concrete situation.

One major challenge in the proposed system is that the
goal formulation step is hard to accomplish for end-users. For
this reason, we extended the system by integrating it with a
graphical editor that enables users to easily create a model of
the desired state of their environment and translates this model
into a goal in the Notation3 format. We also explored a method
of deducing potential user goals directly from the service
descriptions of smart devices present in the user’s environment,
thereby transforming the problem of goal formulation into one
of merely selecting an appropriate goal.

ACKNOWLEDGMENTS

This work was in part supported by the Swiss National
Science Foundation under grant number 134631. The authors
thank Jos De Roo for his help with the EYE reasoner.

REFERENCES

[1] A.J. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon,
“Home Automation in the Wild: Challenges and Opportunities,” in Proc.
CHI, 2011, pp. 2115-2124.

[2] R. Harper, “From Smart Home to Connected Home,” in The Connected
Home - The Future of Domestic Life, R. Harper, Ed., Springer, 2011, pp.
3-18.

[3] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, and

P. Bahl, “An Operating System for the Home,” in Proc. NSDI, 2012, pp.
25-41.

[4] W. K. Edwards and R. E. Grinter, “At Home with Ubiquitous Computing:
Seven Challenges,” in Proc. UbiComp, 2001, pp. 256-272.

[5] J. L. M. Lastra and I. M. Delamer, “Semantic Web Services in Factory
Automation: Fundamental Insights and Research Roadmap,” IEEE Trans.
Ind. Informat., vol. 2, no. 1, pp. 1-11, 2006.

[6] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. Gabarré Vallés,
and R. Van de Walle, “Functional Descriptions as the Bridge between
Hypermedia APIs and the Semantic Web,” in Proc. WS-REST, 2012, pp.
33-40.

[7]1 D. Guinard, C. Floerkemeier, and S. Sarma, “Cloud Computing, REST and
Mashups to Simplify RFID Application Development and Deployment,”
in Proc. WoT, 2011.

[8] S. Mayer, M. Schalch, M. George, and G. Soros, “Device Recognition
for Intuitive Interaction with the Web of Things,” in Adj. Proc. UbiComp,
2013, pp. 239-242.



	Introduction
	Semantics-assisted Service Composition in Smart Environments
	Creation of User Goals by End-Users
	Automatic Creation of User Goals
	Conclusion
	References

