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What do we want to do?



Predicting future earthquake rates

We want to predict number of earthquakes and seismic states in future
years, based on number of earthquakes in previous years, from 1900 to
2006.

Assumptions:

I Earth can be in 3 possible seismic states ,
I occurrence of earthquakes in a year depends on the seismic state in

that year,
I Earth in state λ emits O earthquakes in a year, where O is following

a Poisson process: p(o|λ ) = e−λ λ o

o!
.

We model our problem as an imprecise hidden Markov model.
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Predicting future earthquake rates

We want to predict number of earthquakes and seismic states in future
years, based on number of earthquakes in previous years, from 1900 to
2006.

Assumptions:
I Earth can be in 3 possible seismic states λ1= 13.15, λ2= 19.72 and

λ3= 29.71,
I occurrence of earthquakes in a year depends on the seismic state in

that year,
I Earth in state λ emits O earthquakes in a year, where O is following

a Poisson process: p(o|λ ) = e−λ λ o

o!
.

We model our problem as an imprecise hidden Markov model.



Our application: inference and learning
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Our problem: estimating the
local models
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we want to estimate the unknown local uncertainty models.



An easier problem



What if the state sequence were known?
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Suppose X = {a,b} and O = {o,p,q}.
With hidden state sequence x1:n and output sequence o1:n (x ,y ∈X and
z ∈ O):

nx : number of times a state x is reached,
nx ,y : number of times a state transition from x to y takes place,
nx ,z : number of times a state x emits an output z.

Here:
na = 8,nb = 4,

na,a = 4,na,b = 4,nb,a = 3,nb,b = 0,
na,o = 5,na,p = 3,na,q = 0,
nb,o = 0,nb,p = 1,nb,q = 3.



With these counts, how
can we estimate local
models?
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Imprecise Dirichlet model

We use the imprecise Dirichlet model (IDM) to compute estimates for the
local models. If n(A) is the number of occurrences of an event A in N
experiments, then the lower and upper probability of A according to an
IDM are defined as

P(A) =
n(A)
s+N

and P(A) =
s+n(A)

s+N
.

s > 0 is the number of pseudo-counts, which is an inverse measure of the
speed of convergence to a precise model.

Now, we use the quantities nx , nx ,y and nx ,z (with x ,y ∈X and z ∈ O) to
estimate the imprecise transition and emission models:

Q({y}|x) =
nx ,y

s+∑y∗∈X nx ,y∗
and Q({y}|x) =

s+nx ,y

s+∑y∗∈X nx ,y∗
,

S({z}|x) = nx ,z

s+nx
and S({z}|x) = s+nx ,z

s+nx
.
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,

S({z}|x) = nx ,z

s+nx
and S({z}|x) = s+nx ,z

s+nx
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(with x ,y ∈X and z ∈ O):

Q({y}|x) =
nx ,y

s+∑y∗∈X nx ,y∗
, Q({y}|x) =

s+nx ,y

s+∑y∗∈X nx ,y∗
, S({z}|x) =

nx ,z

s+nx
, S({z}|x) =

s+nx ,z

s+nx
.

Here, with s = 2:
Q({a}|a) = 2/5, Q({a}|a) = 3/5, Q({b}|a) = 2/5, Q({b}|a) = 3/5,
Q({a}|b) = 3/5, Q({a}|b) = 1, Q({b}|b) = 0, Q({b}|b) = 2/5,
S({o}|a) = 1/2, S({o}|a) = 7/10, S({o}|b) = 0, S({o}|b) = 1/3,
S({p}|a) = 3/10, S({p}|a) = 1/2, S({p}|b) = 1/6, S({p}|b) = 1/2,
S({q}|a) = 0, S({q}|a) = 1/5, S({q}|b) = 1/5, S({q}|b) = 3/5.
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But the state sequence is
hidden...
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The state sequence x1:n ∈X n is hidden, so it is a random variable X1:n.

(with x ,y ∈X and z ∈ O) nx , nx ,y and nx ,z are random variables Nx , Nx ,y
and Nx ,z .

Idea: instead of using , use

n̂x ,
n̂x ,y ,
n̂x ,z .

o1:n is the known output sequence, and θ ∗ represents the model
parameter.

We can calculate θ ∗ with the Baum–Welch algorithm, so the
idea makes sense.
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The state sequence x1:n ∈X n is hidden, so it is a random variable X1:n.

(with x ,y ∈X and z ∈ O) nx , nx ,y and nx ,z are random variables Nx , Nx ,y
and Nx ,z .

Idea: instead of using real counts, use estimates:

n̂x ,
n̂x ,y ,
n̂x ,z .

o1:n is the known output sequence, and θ ∗ represents the model
parameter.

We can calculate θ ∗ with the Baum–Welch algorithm, so the
idea makes sense.
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The state sequence x1:n ∈X n is hidden, so it is a random variable X1:n.

(with x ,y ∈X and z ∈ O) nx , nx ,y and nx ,z are random variables Nx , Nx ,y
and Nx ,z .

Idea: instead of using real counts, use expected counts:

n̂x= E(Nx |o1:n,θ
∗),

n̂x ,y= E(Nx ,y |o1:n,θ
∗),

n̂x ,z= E(Nx ,z |o1:n,θ
∗).

o1:n is the known output sequence, and θ ∗ represents the model
parameter.

We can calculate θ ∗ with the Baum–Welch algorithm, so the
idea makes sense.
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The state sequence x1:n ∈X n is hidden, so it is a random variable X1:n.

(with x ,y ∈X and z ∈ O) nx , nx ,y and nx ,z are random variables Nx , Nx ,y
and Nx ,z .

Idea: instead of using real counts, use expected counts

n̂x= E(Nx |o1:n,θ
∗),

n̂x ,y= E(Nx ,y |o1:n,θ
∗),

n̂x ,z= E(Nx ,z |o1:n,θ
∗).

o1:n is the known output sequence, and θ ∗ represents the model
parameter.

We can calculate θ ∗ with the Baum–Welch algorithm, so the
idea makes sense.
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The state sequence x1:n ∈X n is hidden, so it is a random variable X1:n.

(with x ,y ∈X and z ∈ O) nx , nx ,y and nx ,z are random variables Nx , Nx ,y
and Nx ,z .

Idea: instead of using real counts, use expected counts

n̂x= E(Nx |o1:n,θ
∗),

n̂x ,y= E(Nx ,y |o1:n,θ
∗),

n̂x ,z= E(Nx ,z |o1:n,θ
∗).

o1:n is the known output sequence, and θ ∗ represents the model
parameter. We can calculate θ ∗ with the Baum–Welch algorithm, so the
idea makes sense.



Estimated local models

With known state sequence x1:n (x ,y ∈X and z ∈ O) :

Q({y}|x) =
nx ,y

s+∑y∗∈X nx ,y∗
and Q({y}|x) =

s+nx ,y

s+∑y∗∈X nx ,y∗
,

S({z}|x) = nx ,z

s+nx
and S({z}|x) = s+nx ,z

s+nx
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Estimated local models

With unknown state sequence X1:n (x ,y ∈X and z ∈ O) :

Q({y}|x) =
n̂x ,y

s+∑y∗∈X n̂x ,y∗
and Q({y}|x) =

s+ n̂x ,y

s+∑y∗∈X n̂x ,y∗
,

S({z}|x) = n̂x ,z

s+ n̂x
and S({z}|x) = s+ n̂x ,z

s+ n̂x
.



Predicting future earthquake
rates



Learned model
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O2006= o1900 = o1901 = o1902 = o2005 = o2006

Q(·|X1900) =? Q(·|X1901) =? Q(·|X2004) =? Q(·|X2005) =?

Based on the data, we learn the (imprecise) transition model.

λ2

λ1λ3 s = 2 s = 5 s = 20

Q(·|λ1) Q(·|λ2) Q(·|λ3)
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Predicting future earthquake rates

X1900

O1900

X2005

O2005

X2006

O2006

X2007 XN−1 XN

XN

ON

= o1900 = o2005 = o2006
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(ON |o1:n)

With the learned imprecise hidden Markov model, we predict future
earthquake rates. We use the MePiCTIr algorithm (De Cooman et al.,
2010).
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Predicting future earthquake rates

X1900

O1900

X2005

O2005

X2006

O2006

X2007 XN−1

XN

XN

ON= o1900 = o2005 = o2006

PXN
(·|o1:n)

PXN
(·|o1:n)

PON
(ON |o1:n)

With the learned imprecise hidden Markov model, we predict future
earthquake rates. We use the MePiCTIr algorithm (De Cooman et al.,
2010).

year

[P(X ),P(X )]

2007 2011 2015 2019 2023 2027 2031 2035 2039

10
15
20
25

X = {λ1= 13.15,λ2= 19.72,λ3= 29.71}
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