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Abstract: We present a novel robust parametric model order reduction method using matrix interpolation
and common projection matrix. The design space is sampled over an estimation grid and transformation
matrices are computed at the estimation points using a projection-based passivity preserving truncated
balanced realization. A common projection matrix is obtained by the truncation of the singular values
of the merged transformation matrices obtained from the estimation points in the design space. Finally,
the reduced system matrices are interpolated using positive interpolation schemes to obtain a guaranteed
passive parametric reduced model. The proposed technique is validated using pertinent numerical results.
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1. INTRODUCTION

Large scale systems are present in many fields of engineering
and for many applications, such as circuit simulation and time-
dependent partial differential equation (PDE) control problems,
where the internal dimension of the system is quite large, with
respect to the number of input and output ports. In these large-
scale settings, the system dimension makes computations in-
tractable due to memory, time limitations and ill-conditioning.
The common approach to overcome this is by means of model
order reduction that has similar response characteristics as the
original system with a much lower storage requirement and
evaluation time. The resulting reduced model can eventually
replace the original system as a component in a large simula-
tion or it can be used to develop a low dimensional controller
suitable for real time applications.

Therefore, model order reduction (MOR) techniques as in Gal-
livan et al. [1994], [Feldmann and R. Freund, 1995], Gallivan
et al. [1996], Odabasioglu et al. [1998], Knockaert and De Zut-
ter [2000], are crucial when dealing with robust design issues
in order to reduce the complexity and computational cost of the
simulations, while retaining the important physical features of
the original large scale system.

Over the years, active research has been focused on model
order reduction. Two main classes of MOR methods can be
distinguished: 1) moment matching methods, and 2) balanced
and Hankel norm methods. The moment matching methods
for large-scale problems have led to the use of Krylov and
rational Krylov subspace projection methods. The importance
of producing passive or positive-real reduced models resulted
in several algorithms that preserve passivity of RLC circuits e.g.
Odabasioglu et al. [1998] and Knockaert and De Zutter [2000].
As Krylov techniques fail to generate models with provable
error bounds, Kamon et al. [2000], the balanced and Hankel
norm approaches have gained attention in the MOR research
area. Balanced and Hankel norm reduction methods, already
well-developed in the control literature, Glover [1984], have a
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very close connection to the singular value decomposition and
have been receiving renewed attention in the electronic design
automation community. These methods preserve asymptotic
stability and allow for global error bounds. As they rely upon
dense matrix computations they do not scale well in terms
of computational efficiency and numerical stability. A strong
current trend aims at combining these two classes of methods
and their corresponding advantages.

MOR techniques perform model order reduction only with re-
spect to the frequency or Laplace variable. It is also essential
to analyze the response of a circuit as a function of design
parameters, such as geometrical features and other character-
istics during the circuit design synthesis of large-scale applica-
tions. Parametric model order reduction (PMOR) methods are
well suited for such design activities as they can reduce large
systems of equations with respect to both frequency and other
design parameters.

Different types of PMOR methods have developed over the last
years. Multiparameter moment-matching methods presented in
Gunupudi et al. [2003], Daniel et al. [2004] use a subspace pro-
jection approach, but they suffer from oversize when the num-
ber of moments to match is high, either because high accuracy
is required or because the number of parameters is large. Passiv-
ity preservation for non-affine parameters is presented in Farle
et al. [2011] proposes a novel model order reduction technique
which preserves passivity but the algorithm requires Cholesky
factorization.The technique presented in Ferranti et al. [2010]
combines traditional passivity-preserving MOR methods and
positive interpolation schemes. A PMOR method based on a
parameterization process of matrices generated by electromag-
netic (EM) methods and projection subspaces is proposed in
Ferranti et al. [2011]. In Ferranti et al. [2010, 2011] the over-
all passivity of parametric reduced order models (ROMs) is
guaranteed over the design space of interest. In Panzer et al.
[2010], Eid et al. [2011] a matrix interpolation-based PMOR
is presented. A set of reduced system matrices in a common
subspace is computed and interpolated to generate a parametric
reduced order model. This technique avoids the oversize prob-
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lem of multiparameter moment matching based algorithms, but
the reduced system matrices needed for interpolation must have
the same reduced order and must be post processed for the
reprojection onto the common subspace, which is needed for
matrix interpolation. The passivity of parametric reduced order
model is not guaranteed.

This paper proposes a novel PMOR technique that enhances
and improves the method of Panzer et al. [2010], Eid et al.
[2011] by using common projection matrices over the entire de-
sign space and passivity preserving parameterization schemes.
The modified Smith technique, Gugercin et al. [2001], Wong
et al. [2006], is used to compute efficiently the grammians of
the large system and then similarity transformation matrices
are generated using the projection-based passive truncated bal-
anced realization (TBR), Yan et al. [2007]. The estimation grid
and validation grid are chosen for the design space and trans-
formation matrices are computed over the estimation points in
the design space. The truncation of the singular values of the
merged transformation matrices generates a common projection
matrix for the entire design space. A passive parametric reduced
model is then obtained by interpolation of the reduced system
matrices using positive interpolation schemes.

The paper is organized as follows. Section 2 gives an overview
of the Smith technique and the projection-based TBR. Section 3
describes the generation of common projection matrices. Next,
multivariate interpolation schemes and passivity-preservation
are described in Section 4. Finally some pertinent examples
validate the proposed technique in Section 5.

2. PROJECTION-BASED BALANCED TRUNCATION

In control theory, eigenvalues or poles define the system sta-
bility, whereas Hankel singular values define the energy of
each state of the system. Keeping the dominant energy states
of a system, preserves most of its characteristics in terms of
stability, frequency and time responses. This is the rationale
for the use of projection-based TBR in model order reduction.
The major advantage of TBR is that it can give a determinis-
tic global bound for the approximation error and can produce
nearly optimal models in terms of error and model sizes.

For the projection-based balanced truncation, let us consider
a parametric dynamical system with design parameters g =
(g(1), ...,g(N)) in the descriptor state-space form :

C(g)
dx(t,g)

dt
=−G(g)x(t,g)+Bu(t)

y(t,g) = L′x(t,g)+Du(t) (1)
where ′ is the transpose of the matrix. The fast and efficient
modified Smith technique, Gugercin et al. [2001], Wong et al.
[2006] is used in this paper to find the controllability grammian
(Wc) and the observability grammian (Wo) of a large scale sys-
tem. For the state-space model (1), the generalized grammians
are defined as the unique solutions of the linear equations

−C(g)WcG(g)′−G(g)WcC(g)′+BB′ = 0 (2)
−C(g)′WoG(g)−G(g)′WoC(g)+LL′ = 0 (3)

For every real scalar p < 0 , equation (2) can be written as:
ApWcA′p−Wc +BpB′p = 0 (4)

where Ap = (pC(g) − G(g))−1(pC(g) + G(g)), and Bp =√
(−2p)(pC(g)−G(g))−1B. Hence the controllability gram-

mian can be computed as

Wc ≈
k−1

∑
j=0

A j
pBpB′p(A

′
p)

j (5)

Similarly, taking Ãp = (pC(g)+G(g))(pC(g)−G(g))−1, and
Lp =

√
(−2p)L(pC(g)−G(g))−1 , the observability gram-

mian Wo can be computed. The value of k in (5) can be found
from the convergence criterion:

‖Wk−1
c −Wk

c‖2

‖Wk−1
c ‖2

≤ threshold (6)

The square root of the eigenvalues of the product of the gram-
mians produces the Hankel singular values as shown:√

eig(WcWo) = Σ (7)
where Σ = [σ1,σ2, .....,σn] with σ1 ≥ σ2....... ≥ σn where
σ1,σ2, .....,σn are called the Hankel singular values of the
system, which quantify its reachability and observability. q can
be defined for a desired maximal error.

‖ Y− Ŷ‖∞ ≤ 2
n

∑
i=q+1

σi (8)

where Y and Ŷ represent the frequency response of the original
model and the reduced model.

Once the grammians and the reduced order of the system are
computed, the similarity transformation matrix T is computed
from the grammians by Cholesky decomposition and SVD as
follows:

Wc = LcL′c
Wo = LoL′o

UΣV′ = svd(L′cC′Lo) (9)
Based on q the reduced order as defined in (8), the Σ and U
can be truncated to Σq and Uq respectively for computing the
transformation matrix Tq as follows:

U = [Un×q Un×n−q]

Σ =

[
Σq 0
0 Σn−q

]
Tq = LcUqΣ

−1/2
q (10)

Thus, Tq spans the dominant subspace.

Although TBR-like methods are accurate globally, they can-
not generate a reduced model with exact local behavior at
low frequencies, unlike what happens in moment matching ap-
proaches, where an expansion point can be chosen at frequency
0, Yan et al. [2007]. To overcome this, a zero-order moment
is added to the projection matrix of the projection-based TBR
method as follows:

GM0 = B
T = [M0, Tq] (11)

Here M0 is the zero-order moment. Now, the reduced model
has both global accuracy and exact low frequency behavior
as the transformation matrix T is a union of M0 and Tq.
Next the transformation matrix is orthonormalized to obtain
the projection matrix in order to generate the reduced model
by congruence transformation. In this paper we orthonormalize



a common transformation matrix for the entire design space
to get a common projection matrix. This is explained in the
following section.

3. COMMON PROJECTION MATRIX COMPUTATION

In order to find a common projection matrix first the design
space has to be sampled as described in Ferranti et al. [2011],
containing all parameters except frequency. Two data grids
are used in the process of modeling: an estimation grid and a
validation grid as shown in Fig. 1. Parametric reduced models

Fig. 1. Example of sampled estimation and validation design
space grids.

are estimated globally using the estimation grid and are val-
idated over the validation grid. As described in Section 2, a
set of similarity transformation matrices are computed at the
estimation points. The similarity transformation matrices will
have different dimensions depending on the truncation of the
Hankel singular values based on the error-bound. To compute
the common projection matrix, the transformation matrices are
computed over the estimated grid and are merged by column
stacking.

Tunion = [T1,T2, .....TEstpt ] (12)
where Estpt is the number of estimation points considered in
the design space. The dimension of Tunion is n×w where n is
the order of the original system and w = (q1 + q2...+ qEstpt )
with qi the reduced order determined as defined in (8) for the
i− th estimation point in the design space. Then, the (economy
sized)singular value decomposition (svd) is computed for the
union of the projection matrices

UΣV′ = svd(Tunion) (13)

It is seen that U ,V, Σ are respectively n×w, w×w and w×w
matrices. A common reduced order r for a cell is defined based
on the first r significant singular values, by setting a threshold
to the ratio of the singular values with respect to the largest
singular value.

σmax = σ1
σi

σmax
≥ thresholdσ , i = 1,2, ........,r (14)

Thus a common projection matrix Qcomm is obtained by the
QR orthonormalization of the common transformation matrix,
Tcomm.

Tcomm = UrΣrVr
′

Qcomm = Ur (15)
where Ur, Σr and Vr have the truncated dimension n × r,
r × r and r × r respectively. The congruence transformation
using Qcomm on the original models over the estimation grid
of the design space gives a set of reduced system matrices.
Using global approach, this Qcomm is used over the entire
design space. In Leung and Khazaka [2005] svd is used to
construct the dominant subspace, but the circuit equation has
to be discretized initially to obtain the PMOR. Also a similar
approach is used in Li et al. [2005] where svd is applied on the
sensitivity matrices of the system.

It is assumed that a fixed discretization mesh is used for
the system under study and it is independent of the specific
design parameter values, Ferranti et al. [2011]. The size of
the system matrices as well as the numbering of the mesh
nodes and mesh edges are preserved. The mesh is only locally
stretched or shrunk when shape parameters are modified. In
general, the global coordinates of the nodes as well as the length
and orientation of the edges of the topologically fixed mesh
change when shape parameters change, however, these changes
neither introduce new state variables nor eliminate existing
state variables. The matrices B, L′ are uniquely determined
by the circuit topology and therefore remain constant, while
the matrices C and G are defined as functions of the design
parameters. Starting from a set of models in the estimation
design space grid that are generated with respect to a common
space and using common projection matrices, it can be shown
that all the reduced system matrices in the estimation grid are
in the same subspace and can be interpolated.

4. MULTIVARIATE INTERPOLATION

After computing the reduced matrices, they are interpolated
to build a parametric ROM. Tensor product, Cheney [1986]
or tessellation methods, Watson [1981] can be used to realize
multivariate interpolation. Any interpolation scheme based on
a class of positive interpolation operators, Ferranti et al. [2010]
can be used, e.g., multilinear, and simplicial methods, Weiser
and Zarantonello [1988], to preserve overall passivity as de-
scribed in what follows.

For example considering multilinear interpolation, each inter-
polated matrix J(g(1), ...,g(N)), can be written as

J(g(1), ...,g(N)) =∑
K1
k1=1 · · ·∑

KN
kN=1J

(g(1)k1
,...,g(N)

kN
)

lk1(g
(1)) · · · lkN (g

(N)) (16)

where the interpolation kernel lki(g
(i)) is a scalar function

satisfying the following constraints

0≤ lki(g
(i))≤ 1,

lki(g
(i)) = δki

Ki

∑
ki=1

lki(g
(i)) = 1 (17)

It can be noted that the interpolation kernel functions of these
interpolation methods only depend on the design space grid
points and their computation does not require the prior solu-
tion of a linear system to impose an interpolation constraint.



These positive interpolation schemes have already been used
in Ferranti et al. [2010], where a parametric macromodel is
built by interpolating a set of ROMs treated as input-output
systems, while preserving overall stability and passivity. There-
fore, interpolating systems, matrices or scalars does not make
any difference for these interpolation kernel functions.

When performing transient analysis, stability and passivity
must be guaranteed. It is known that, while a passive or
positive-real system is also stable, the reverse is not neces-
sarily true, Rohrer and Nosrati [1981], which is crucial when
the macromodel is to be utilized in a time domain simulator.
Passive systems cannot generate more energy than they absorb
through their ports. When the system is terminated on any
arbitrary passive load, none of them will cause the system to
become unstable, Weinberg [1962], A. Guillemin [1957].

For projection-based TBR, the original systems are assumed to
be in the descriptor state space form (1) satisfying the following
conditions:

G+ sC is a regular matrix pencil

C = C′ ≥ 0

G+G′ ≥ 0

B = L (18)

Then the passivity of the system with transfer function Y(s) =
L′(sC+G)−1B is guaranteed, Freund [2000]. For this specific
format, projection-based TBR methods guarantee the passivity
of the reduced model built by congruence transformation.

Cr(g) = Qcomm
′C(g)Qcomm ≥ 0

Gr(g) = Qcomm
′G(g)Qcomm ≥ 0

Br(g) = Qcomm
′B(g)

Lr(g) = Qcomm
′L(g) (19)

As congruence transformations preserve the definiteness of ma-
trices, the reduced Gr, Cr are also positive semidefinite. Since
any nonnegative linear combination of positive (semidefinite)
definite real matrices is a positive (semidefinite) definite real
matrix, stability and passivity are preserved over the entire
design space if positive interpolation operators are used to in-
terpolate reduced matrices.

A flowchart that describes the different steps of the proposed
technique is shown in Fig.2.

5. NUMERICAL RESULTS

Some numerical examples are used to demonstrate the accuracy
and efficiency of the proposed PMOR technique. Let us define
the weighted RMS error which is used to validate the accuracy
of the results:

Err(Y1(s),Y2(s)) =

√√√√√∑
Ks
k=1 ∑

Pin
i=1 ∑

Pout
j=1
|Y1,(i j)(sk)−Y2,(i j)(sk)|2

W(i j)(sk)

PinPoutKs

W(i j)(sk) = |Y2,(i j)(sk)|2 (20)

where Ks, Pin and Pout are the number of frequency samples,
input and output ports of the system, respectively.

Fig. 2. Flowchart of the proposed technique.

Fig. 3. EX1: Cross section of two coupled microstrip lines.

5.1 EX1: Two coupled microstrips with one parameter variation
in addition to frequency

Table 1. PARAMETERS OF TWO COUPLED
MICROSTRIPS

Parameter Min Max

Frequency ( f req) 1 kHz 4 GHz

Length (L) 2 cm 6 cm

Two coupled microstrips are modeled as described in, Knock-
aert and De Zutter [2000]. Fig.3 shows their cross section. The
conductors have width w = 100 µm and thickness t = 50 µm.
The length L is considered as a parameter in addition to fre-
quency. Their corresponding ranges are shown in Table 1. The
C,G,B,L matrices are obtained for 5 values of L. The original
models are represented as in (1) satisfying the conditions in
(18) and have an order of 2002. The matrices C and G can be
represented as:

C =

[
Q 0
0 H

]
G =

[
N E
−E R

]
(21)

where Q, H ,R and N are the capacitance, inductance, resistance
and conductance matrices respectively and E is the incident
matrix associated with the connectivity.

L = {2,4,6} cm are considered as the estimation points and
L = {3,5} cm are considered as the validation points. The



Fig. 4. EX1: Singular values of the projection matrix.

Fig. 5. EX1: Magnitude of Y14(s,L) for L = {3,5} cm using a
common projection matrix.

reduced order and the transformation matrices are computed for
the estimation points as described in Section 2. Then a common
projection matrix is computed for the entire design space. If
the union of the transformation matrices had been used for the
congruence transformation, then the reduced order would have
been 138. Due to the truncation of the singular values by a
threshold of 1e− 4 the dimension of the common projection
matrix is 50 as shown in Fig. 4. Fig.5 compares Y14(s,L)
and its reduced order for the validation points for length L =
{3,5} cm . The weighted RMS error is equal to 0.014. These
specific points have not been used for the reduced order model
generation. The parametric ROM is able to accurately describe
the parametric behavior of the system with a small order.
Overall passivity is guaranteed by construction.

5.2 EX2: Two coupled microstrips with two parameter variation
in addition to frequency

Microstrips are studied in this example considering two param-
eters in addition to frequency, namely the length of the lines L
and a fabrication parameter λ . The matrices C and G can be
written as

C(λ ) =

[
(1+λ )Q 0

0 H

]
G(λ ) =

[
N E
−E (1+λ )R

]
(22)

where λ represents the variations in the fabrication param-
eter and affects the capacitance and resistance matrices, Li
et al. [2008]. Their corresponding ranges are shown in Table

Table 2. PARAMETERS OF TWO COUPLED
MICROSTRIPS

Parameter Min Max

Frequency ( f req) 1 kHz 4 GHz

Length (L) 2 cm 6 cm

Fabrication Parameter (λ ) -15 % 15 %

Fig. 6. EX2: Singular values of the projection matrix.

Fig. 7. EX2: Magnitude of Y11(s,L,λ ) for λ = {−7.5,7.5}%
L = 3 cm using a common projection matrix.

2. A 3× 3 (L,λ ) estimation grid, L = {2,4,6} cm and λ =
{−15,0,15} % is considered and a validation grid of 2× 2
(L,λ ), L = {3,5} cm and λ = {−7.5,7.5} % are considered.
The reduced order and the transformation matrices are com-
puted at the estimation points as described in Section 2.

A common projection matrix is obtained for the entire design
space. Similarly, to the previous example,the truncation of the
singular values leads to obtain a small reduced order, as shown
in Fig.6. Fig.7 compares Y11(s,L,λ ) and its reduced order for
the validation points for λ = {−7.5,7.5}% and L = 3 cm. The
weighted RMS error is equal to 0.017. This specific point have
not been used for the reduced order model generation.

It can be noted that even with more than one parameter in
addition to frequency, the parametric ROM is able to accurately
captures the dynamic system behavior that is influenced by the
design parameters. As in the previous example, the passivity of
the parametric ROM is guaranteed over the entire design space.



6. CONCLUSION

We have presented a robust PMOR method using matrix inter-
polation and a common projection matrix. The design space is
sampled over an estimation grid and transformation matrices
are computed at the estimation points using a projection-based
passive TBR. A common projection matrix is obtained by the
truncation of the singular values of the merged transforma-
tion matrices obtained at the estimation points in the design
space. The reduced system matrices are then interpolated using
positive interpolation schemes to obtain a passive parametric
reduced model. Pertinent numerical examples show that the
presented PMOR is able to build accurate parametric reduced
models that guarantee passivity.
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