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Abstract: An Extended Prediction Self-Adaptive Control (EPSAC) strategy is applied to the rocuronium 
administration, a neuromuscular blocking drug used in anaesthesia to facilitate endotracheal intubation 
and to provide skeletal muscle relaxation during surgery. A safe anaesthesia should provide comfort to 
the patient and best possible working conditions for the surgeon. The muscle relaxant plays an important 
role and an adequate muscle relaxation, which allows efficient and safe surgery, can be provided using 
automated control. Moreover, closed-loop control may reduce anesthetist workload and achieve better 
regulation of muscle relaxation than manual administration, calculating the dose required for each patient 
and avoiding in this way overdosing. Predictive control requires prior knowledge of system dynamics, 
therefore a mathematical  model is required. A three-compartment model for rocuronium is presented. 
Several parameter sets are used to simulate different patients and control performance is discussed.  
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1. INTRODUCTION 

 
Muscle relaxants are used during surgeries and in intensive 
care units to facilitate management of ventilation, to control 
intracranial hypertension, to reduce oxygen consumption, to 
eliminate shivering, and to provide immobility for certain 
diagnostic studies. Patients receiving muscle relaxants have 
critical illness, therefore it is important to select the 
appropriate drug.  The rocuronium properties make it suitable 
for continuous administration (McCoy et al. 1996) and for 
target controlled infusions (TCI). The duration of action is 
similar to that of vecuronium, but it has more rapid onset of 
action (Foldes et al. 1991). It is classified as an intermediate-
duration non-depolarizing neuromuscular blocking agent. 
 
Pharmacological modeling has been used to describe the 
metabolism of  muscle relaxants for more than three decades 
(Farenc et al. 2001; Wierda et al. 1990; Vermeyen, Hoffman 
and Saldien 2003).  Compartmental models are formulated on 
the basis of the minimal number of compartments that 
adequately fits observed data. This type of model is widely 
used in different control strategies. Using an automatic 
control system to maintain skeletal muscle relaxation 
increases the accuracy of the desired neuromuscular block 
and minimizes the administered drug at the same time. 
Furthermore, more appropriate level of relaxation 
corresponding to the clinical requirement can be targeted as 
the observation interval is considerably reduced. Closed-loop 
muscle relaxation control may also play a role in the 
detection of insufficient level of sedation. Giving a too high  

 
 
 
dose of muscle relaxant to prevent movement could increase 
the risk of not detecting insufficient sedation. Closed-loop 
control avoids complete paralysis, allowing in some cases 
patient movement to indicate patient responsiveness.  
 
Automatic feedback control of skeletal muscle relaxation has 
been addressed by several research groups, mainly because 
syringe pumps can be easily controlled by computer systems 
and more importantly a direct and reliable measure of effect 
is available. A variety of control strategies can be found in 
the literature for muscle relaxants, ranging from on-off, PID 
controllers (De Vries, Ros & Booij 1986) to model based and 
adaptive controllers (Kansanaho & Olkkola 1996). Due to the 
fact that PID controllers cannot anticipate the response of the 
patient and do not have any knowledge of the drug 
metabolism, stability problems are present. Predictive control 
has some advantages: it is robust against variable and 
unknown time-delay, over parameterization of system 
models, and has good disturbance rejection properties.  
 
This paper presents an Extended Prediction Self-Adaptive 
Control (EPSAC) strategy implemented for the 
administration of rocuronium during general anaesthesia. An 
overview of the pharmacokinetic and pharmacodynamic 
patient model is given in the next section. The NEPSAC 
(Nonlinear EPSAC) approach to MPC is presented in section 
3. Simulation results of the closed-loop NEPSAC predictive 
control strategy when different parameter sets are used to 
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simulate the patients are discussed in section 4. The 
conclusions are summarized in a final section and future step 
is suggested. 
 
 

2. PATIENT MODEL 
 

The pharmacological modeling comprises two main 
categories known as pharmacokinetics (PK) and 
pharmacodynamics (PD). The former category studies the 
relationship between drug dose and drug concentration 
existing in the blood plasma, while the latter deals with the 
effect produced by the drug. 
 
The PK model considered in this paper consists of three 
compartments. Two peripheral compartments are arranged 
around a central compartment. After the drug injection, the 
plasma concentration of rocuronium declines rapidly in 
exponential phases corresponding to distribution to peripheral 
compartments and elimination. To identify the drug effect, a 
4th compartment known as the effect compartment has been 
introduced to the rocuronium kinetics (Fig.1). 
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Fig.1. PK-PD compartmental model 

 
The pharmacokinetics described by the three-compartment 
model is expressed by the following equations: 
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where 321  , , xxx  denote the concentration of drug [mg/ml] in 

the central (compartment 1) and peripheral compartments 

(compartments 2 and 3). The parameters jik , for i j≠ , 

denote the rate constants for equilibration between 
compartments. cV  is the volume of distribution per kg of 

body weight  in the central compartment. The constant 10k  is 

the rate constant for the processes that irreversibly remove 
drug from the central and peripheral compartments, and u(t) 

[mg/s] is the infusion rate of the rocuronium into the central 
compartment.  
 
Inter-compartmental constant rate values for PK model found 
in the literature are presented below. The values are obtained  
based on studies on different groups of patients. Mean values 
for the age and weight of these patients are given as well. 
 
Table 1. Pharmacokinetic parameter sets for rocuronium as 
found in the literature: Set 1 (Alvarez-Gomez et al. 1994); 
Set 2 (Wierda et al. 1991); Set 3 (Szenohradszky et al. 1992); 
Set 4 (Cooper et al. 1993) 
 Set 1 Set  2 Set 3 Set 4 
VC (ml kg-1) 57 45 77 69 
k10 (min-1) 0.0952 0.1 0.0375 0.119 
k12 (min-1) 0.2807 0.21 0.1142 0.259 
k21 (min-1) 0.2149 0.13 0.1758 0.163 
k13 (min-1) 0.0322 0.028 0.0196 0.06 
k31 (min-1) 0.0166 0.01 0.0189 0.012 
weight (kg) 70 68 78 69 
age (yr) 30 51 44 46 
 
Regarding the pharmacodynamic (PD) model, an additional 
hypothetical effect compartment was proposed to represent 
the lag between drug plasma concentration and drug 
response. The effect compartment receives drug from the 
central compartment by a first-order process, but it is 
assumed that the quantity of drug is so small that it does not 
affect the pharmacokinetic model. The input to the effect site 
compartment is expressed by a first-order rate constant, k1e. 
The output is also expressed by a first-order rate constant, ke0. 
This effect site compartment is represented by the following 
equation: 
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where ][min168.0 1
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−== ee kk and ex  is the drug 

concentration
 
in the effect compartment (Sheiner et al. 1979). 

The effect compartment is defined as
 

a negligibly small 
compartment connected to the central compartment.

 
Knowing 

0ek , the apparent concentration in the effect compartment 

can be calculated since 0ek  will precisely characterize the 

temporal effects of equilibration between the plasma 
concentration and the corresponding drug effect. 
 
The level of neuromuscular block can be related to the drug 
concentration in the effect compartment xe by the following 
sigmoid equation: 
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where E(t) is the degree of muscle relaxation, maxE  denotes 

the maximum effect achieved by the muscle relaxant, xe,50 is 
the drug concentration at half maximal effect and represents 
the patient sensitivity to the drug, and γ determines the 
steepness of the curve. The following values are taken from 
(Vermeyen et. al. 2003): ;79.4;100 ;100 0max === γEE  

g/ml].[ 823.0  50, µ=ex  



 

 

 

 

In clinical practice the degree of muscle relaxation or the 
level of neuromuscular block is measured by assessing 
responses to peripheral nerve stimulations, typically on the 
ulnar nerve. The usual method to assess degree of relaxation 
is based on a train-of-four (TOF) stimulation and the 
respective measurement of response.  To perform a train-of-
four (TOF) pattern of nerve stimulation, 4 supramaximal 
electrical stimuli are applied over the course of a 1.5 to 2.0 
seconds period (frequency of 2 Hz). Each stimulus causes a 
muscle contraction, and the “fade” of response to this 
stimulus is measured. Dividing the level of the fourth 
response (4r ) by the level of the first response (1r ) provides 

the TOF ratio:  

(4)                                        100
1

4

r

r
TOF ⋅=  

TOF ratio can be analytically calculated using relation (3). 
 

3. CONTROL ALGORITHM 
 

EPSAC strategy, as described in detail in (De Keyser 2003), 
is based on a generic process model: 
 

( ) ( ) ( )y t x t n t= +                             (5) 

 
The signal x(t) is the model output resulting from the model 
(3) input u(t). The disturbance n(t) includes the effects in the 
measured output y(t) which do not come from the model 
input u(t) via the available model. These non-measurable 
disturbances have a stochastic character with non-zero 
average value, which can be modelled by a coloured noise 
process: 

 
1 1( ) ( ) / ( ) ( )n t C q D q e t− − = ⋅                  (6) 

 
with: e(t) - uncorrelated (white) noise with zero mean value;  
C(q-1) and D(q-1) - monic polynomials in the backward shift 
operator q-1 of orders nc and nd. The disturbance filter 

1 1( ) / ( )C q D q− − is considered to be a design filter (De Keyser 

& Ionescu 2003) and it plays an important role in MPC. 
 

3.1 Prediction Algorithm 

The model output x(t) represents the effect of the control 
input u(t) on the process output y(t) and is also a non-
measurable signal, and the relationship between u(t) and x(t) 
is given by the generic dynamic system model: 

 

x(t) = f x(t −1),x(t − 2),L,u(t −1),u(t − 2),L


ù
ù     (7). 

 
The fundamental step in MPC methodology consists in 
prediction of the process output y(t+k) at time instant t, 
indicated by { }2..1),/( Nktkty =+ , over the prediction 

horizon N2, and based on: 
- the measurements available at sampling instant t: 

y(t), y(t −1),L,u(t −1),u(t − 2),L{ } ; 

- The future values of the input signal (postulated at time 
t): { }( | ), ( 1| ),u t t u t t+ L . 

Using the generic process model (5), the predicted values of 
the output are: 

( | ) ( | ) ( | )y t k t x t k t n t k t+ = + + +                (8) 

Prediction of x(t+k|t) and of n(t+k|t) can be done respectively 
by recursion of the process model (7) and by using filtering 
techniques on the noise model (6) (De Keyser, 2003). 
 

3.2 Control Algorithm 

In EPSAC for linear models, the future response is then 
considered as being the cumulative result of two effects: 
 

base optimize( | ) ( | ) ( | )y t k t y t k t y t k t+ = + + +          (9) 

 
The two contributions have the following origins: 
 

base( | )y t k t+ : 

• effect of past control {u(t-1), u(t-2), ...} (initial 
conditions at time t); 

• effect of a base future control scenario, called 

base( | ), 0u t k t k+ ≥ , which is defined a priori (De 

Keyser 2003); for linear systems the choice is 
irrelevant, a simple choice being 

{ }base( | ) 0, 0u t k t k+ ≡ ≥ ; 

• effect of future (predicted) disturbances n(t+k|t). 
The component base( | )y t k t+  can be easily obtained using 

(6)(7)(8) taking ( | )baseu t k t+  as the model input for (7). 

 

optimize( | )y t k t+ : 

• effect of the optimizing future control actions 

{ }( | ), ( 1| ), ( 1| )uu t t u t t u t N tδ δ δ+ + −K  with 

base( | ) ( | ) ( | )u t k t u t k t u t k tδ + = + − + . 

 
Fig. 2 depicts the concepts of base and optimizing controls. 
Notice that u(t+k|t) is constrained to be constant from k=Nu 
on (and this is realized by selecting ubase(t+k|t) constant from 
k=Nu on and by imposing that δu(t+k|t) should be constant 
from k=Nu on). The design parameter Nu is called the control 
horizon, a well-known concept in MPC-literature. 
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Fig. 2.   The EPSAC concept of base/optimizing controls 

From Fig. 2 it is obvious that the component optimize( | )y t k t+  

is the cumulative effect of a series of impulse inputs and a 
step input: 



 

 

 

 

• an impulse with amplitude ( | )u t tδ  occurring at time t, 

resulting in a contribution ( | )kh u t tδ  to the process 

output at time t+k  (k sampling periods later); 
• an impulse with amplitude )/1( ttu +δ  occurring at 

time t+1, resulting in a contribution )/1(1 ttuhk +− δ   to 

the predicted process output at time t+k (k-1 sampling 
periods later); 

• etc;  
• finally a step ( 1| )uu t N tδ + −  at time 1−+ uNt , 

resulting in a contribution 1 ( 1| )
uk N ug u t N tδ− + + −  to 

the predicted process output at time t+k. 
 
The cumulative effect of all impulses and the step is: 
 

optimize 1

1

( | ) ( | ) ( 1 | )

                       ... ( 1 | )
u

k k

k N u

y t k t h u t t h u t t

g u t N t

δ δ
δ

−

− +

+ = + + +

+ + + −
   (10) 

 
The parameters 

21 2, ,... ,...k Ng g g g are the coefficients of the 

unit step response of the system, i.e. the response of the 
system for a stepwise change of the input (with amplitude 1). 
The parameters 

21 2, ,... ,...k Nh h h h  are the coefficients of the 

unit impulse response of the system and can be easily 
calculated from the step response coefficients and vice versa: 

1k k kh g g −= −  (and 0 -1 0 -1... ... 0h h g g= = = = = ≡ ). 

Using (9) and (10), the key EPSAC-MPC equation: 
 

= +Y Y GU                              (11) 
is obtained, where:  
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with the horizons N1, N2 being design parameters, N1 being 
equal to the time-delay, in samples. The controller output is 
then the result of minimizing the cost function: 
 

2

1

2( ) [ ( | ) ( | )]
N

k N

J r t k t y t k t
=

= + − +∑U                (13) 

 
where  r(t+k/t) is the desired reference trajectory: 
 

( | ) ( 1 | ) (1 ) ( | )r t k t r t k t w t k tα α+ = + − + − +       (14) 
with w the setpoint and α a tuning parameter (0 ≤ α ≤ 1) 
which specifies the desired closed-loop speed. The cost 
function (13) is a quadratic form in U, having the following 

structure using the matrix notation from (12) and with R 
defined similarly to Y: 

1( ) [ ] [ ]J −= − − − −U R Y GU R Y GU               (15) 
which leads after minimization w.r.t. U to the optimal 
solution: 

* 1[ ] ( )T T−= −U G G G R Y                       (16) 
 
The matrix GTG which has to be inverted has dimension Nu x 
Nu. For the default case Nu=1, this results in a simple scalar 
control law. Only the first element )/( ttuδ in U* is required 

in order to compute the actual control input applied to the 
process: 

 

base base( ) ( | ) ( | ) ( | ) (1)u t u t t u t t u t tδ ∗= + = + U       (17) 

 
At the next sampling instant t+1, the whole procedure is 
repeated taking into account the new measurement 
information y(t+1). This is called the principle of receding 
horizon control, another well-known MPC-concept.  
Equation (15) can be re-written as a quadratic form in U as: 

 
T T( )J += +U U HU 2f U c                       (18) 

 
where: [ ]T=H G G , T T[ ( )], ( ) ( )= − − = − −f G R Y c R Y R Y . 
Minimization of ( )J U results in the solution: 

 
 * 1−= −U H f                               (19) 

 
which is equivalent to (16). It is worthwhile to notice that 
optimization with input constraints (on the manipulated 
variable) are accepted only if the control horizon Nu >1. Since 
in this study the control horizon is unitary, the input is 
constrained using clipping (De Keyser 2003).  
 
 

3.3 Nonlinear EPSAC  

The concept of base and optimizing controls/responses as 
introduced in formula (9) is theoretically only valid for linear 
systems, as it is based on the superposition principle. 
However, for nonlinear systems, by selecting the base control 
ubase (t+k/t) appropriately, the 2nd term in (9) can gradually be 
made equal to zero in an iterative way. This then results in 
the optimal solution, also for nonlinear systems, because the 
superposition principle is no longer involved. The procedure 
can be summarized as follows. At each sampling instant: 

1) select an initial { }base( / ), 0 1uu t k t k N+ = −K ; in the 

case of linear models, the choice is irrelevant for the solution, 
some simple examples being 0)/(base ≡+ tktu  or 

)1()/(base −≡+ tutktu  (the last one corresponds to the GPC 

approach). However, for nonlinear models, it is the objective 
to obtain finally (in an iterative way) a control policy 

)/(base tktu + , which is as close as possible to the optimal 

strategy )/( tktu +  (thus bringing the optimizing control 

actions )/( tktu +δ  and the corresponding term 



 

 

 

 

)/(optimize tkty +  practically to zero). In order to minimize 

the number of iterations, it is thus wise to make a ‘good’ 
initial guess for )/(base tktu + . A simple but effective choice 

is to start with )1/()/(base −+≡+ tktutktu , which is the 

optimal control policy derived at the previous time sample. 
2) once a { }base( / ), 0 1uu t k t k N+ = −K  has been chosen, 

calculate { }( / ), 0 1uu t k t k Nδ + = −K and the controls 

{ }base( / ) ( / ) ( / ), 0 1uu t k t u t k t u t k t k Nδ+ = + + + = −K  as 

explained for linear EPSAC. For a linear model, these are the 
optimal controls and the procedure can be stopped. For a 
nonlinear model, these are not the optimal controls because 
the principle of superposition does not hold, but it is 
reasonable to assume that the resulting u(./.) are ‘closer’ to 
the optimal controls than the previous guess ubase(./.); so, for a 
nonlinear model: 

3) continue the procedure - at the same sampling instant! - 
by taking these { }( / ), 0 1uu t k t k N+ = −K  as a new 

{ }base( / ), 0 1uu t k t k N+ = −K  and return to step 2). 

 
Continuing this iteration and considering the above 
mentioned assumption to be true, it can be expected that 
ubase(./.) will converge to the optimal u(./.). Indeed, each time 
that ubase(./.) is closer to u(./.), it means that the δu(./.) are 
smaller and thus also the term yoptimize(./.) in (11) becomes 
smaller. The superposition principle - used in (11), but in fact 
invalid for nonlinear systems - is step-by-step ‘less involved’ 
(it has less impact). Finally, when the δu(./.) are (practically) 
zero, the superposition principle is no longer involved and the 
calculated control signal will thus be optimal, also for the 
nonlinear system.  
It is important to realize that in this specific Nonlinear MPC 
approach, the nonlinear system is never linearized. The 
nonlinear model is directly used to calculate in every iteration 
the base responses ybase(./.) as well as to calculate the required 
step/impulse-response coefficients {gi, hi}. These are the only 
values required in (16) or equivalently, in (19).  

 
 

4. RESULTS AND DISCUSSION 
 

Controller performance was evaluated using different 
parameter sets (Table 1) to simulate the patients. Parameter set 
1 was used for the prediction model.  The tuning of the 
NEPSAC parameters was un-changed. It was considered 
optimal for the following values: Nu=1, N1=1, N2= N1+15, 
α=0.9. The iteration in the NEPSAC procedure was stopped 
either when the value of the δu(./.) was 2000 times smaller than 
the one of the updated ubase(./.), or when the number of 
iterations exceeded 30. It is recommended that the controller 
updates the drug rate every 10 seconds, therefore a sample time 
of 10 seconds has been adopted. 
 
Fig.3. shows the time course of muscle relaxation for reference 
tracking and disturbance rejection. The first scenario represents 
the ideal case, when there are no modelling errors. Of course 
this situation never appears in practice, but it helps us get a 
better view upon the EPSAC performance compared to the 

situation when it is applied to different patients. In the ideal 
case the reference is reached in about 6 minutes, while for the 
worst case scenario the time required is two times higher.   
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Fig.3. Closed-loop response for the controlled variable 
(TOF), using different parameter sets to simulate the patient: 
(a) set 1; (b) set 2; (c) set 3; (d) set 4 
 
The muscle relaxation disturbance associated with an empty 
infusion bag was considered. Since transport of rocuronium 
into the patient is stopped, this disturbance is independent of 
the controller. When the infusion is restarted, a bolus of 
rocuronium is quickly administered to the patient, resulting in 
a transient decrease in muscle relaxation around minute 45. 
 
The respective control effort required to produce the above 
discussed performance is depicted in Fig 4. Since each 
patient has a different sensitivity to the drug, for the same 
reference value, the controller sends different drug rates. The 
patient simulated with the 3rd set of parameters has a higher 
sensitivity to rocuronium, therefore less drug is required. The 
effect of the disturbance caused by the empty infusion bag is 
lower in this case.  
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Fig.4. Closed-loop response for the manipulated variable 
(rocuronium), using different parameter sets to simulate the 
patient: (a) set 1; (b) set 2; (c) set 3; (d) set 4 
 
An overview of the number of iterations required in the 
NEPSAC procedure, as explained in section 3.3, is given in 
Fig 5. All four scenarios find the optimal δu(./.) values within 
the maximum allowed number of iterations. It can be 



 

 

 

 

observed that less iterations are required when using the 3rd 
set of parameters, while the higher number of iterations is 
needed for case (a).  
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Fig.5. Number of iterations required by the controller to find 
the optimal control signal, using different parameter sets to 
simulate the patient: (a) set 1; (b) set 2; (c) set 3; (d) set 4 
 
Although the controller presented is non-adaptive, it performs 
sufficiently well in this first stage, on several simulated 
patients. Further investigation is required to select the proper 
prediction model and more robustness tests are necessary 
before applying this controller in routine clinical conditions.  
 

5. CONCLUSIONS 
 

This contribution presents EPSAC control strategy applied to 
the administration of rocuronium in general anaesthesia. An 
overview of a PK-PD model is given and several parameter 
sets are used to simulate different patients. Performance 
assessment shows good results in set-point tracking and 
disturbance rejection. The controller proved  insensitivity to 
inter-patient variability and disturbance represented by an 
unnoticed empty infusion bag that can occur in clinical 
conditions. The strategy can be easily extended to a multiple-
input multiple-output system, taking into account several 
drugs administered during general anaesthesia. 
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