
Towards Learning Inverse Kinematics with a
Neural Network based Tracking Controller

Tim Waegeman, Benjamin Schrauwen

Department of Electronics and Information Systems
Ghent University, Ghent Belgium
http://reslab.elis.ugent.be

Abstract. Learning an inverse kinematic model of a robot is a well
studied subject. However, achieving this without information about the
geometric characteristics of the robot is less investigated. In this work,
a novel control approach is presented based on a recurrent neural net-
work. Without any prior knowledge about the robot, this control strategy
learns to control the iCub’s robot arm online by solving the inverse kine-
matic problem in its control region. Because of its exploration strategy
the robot starts to learn by generating and observing random motor be-
havior. The modulation and generalization capabilities of this approach
are investigated as well.

Keywords: Adaptive control, Feedback control, Inverse kinematics, Neu-
ral network (NN), Reservoir computing (RC)

1 Introduction

Drawing a figure on a blackboard is a task which humans perform without con-
sciously thinking about how each joint of their arm should be positioned. For
robots like the iCub [1], this task is much more difficult. A robot needs to be able
to map a position from task-space to joint-space, which is called inverse kinemat-
ics. There are multiple positions in joint-space to reach a given task-space tar-
get. On the other hand, mapping positions from joint-space to task-space, called
forward kinematics, is a unique transformation. Solving the inverse kinematics
problem has been investigated extensively. Some approaches use analytical and
numerical methods to solve this problem [2, 3]. More advanced techniques learn
inverse kinematics in different sub-regions of the task-space and use a weight-
ing approach to approximate the inverse kinematic over the entire task-space
[4, 5]. Other techniques use a Recurrent Neural Network (RNN), to train on
forward kinematic data containing the positions in joint and task-space [6–8].
This removes the redundancy in the inverse transformation, because there are
no redundant examples given during training. However, these techniques learn
an attractor that is limited to the regions described by the training data and
although they posses generalization capabilities, learning the entire inverse kine-
matic model can not be claimed. The proposed controller learns to control the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55694188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iCub’s arm online by creating a model based on previous actions and observa-
tions of the robot. It uses a Reservoir Computing (RC) network to acquire an
inverse kinematic model, but only in the visited regions of the arm. By doing
both the control an the updating of the model simultaneously, the desired con-
trol behavior can be acquired without the need of having any prior knowledge
about the robot.

The remainder of this paper is structured as follows: first, in Section 2, we
give a short introduction on Reservoir Computing and explain the training al-
gorithm. Next, in Section 3, the design steps of the controller are explained. To
demonstrate the controllers performance, we apply it on a kinematic control task
in Section 4. Finally, we draw our conclusions in Section 5.

2 Reservoir Computing

The RC network model used in this paper follows the Echo State Network (ESN)
approach [9]. An ESN is composed of a discrete-time recurrent neural network
(i.e., the reservoir) and a linear readout output layer which maps the reservoir
states to the desired output. For many applications, the dynamics of the reservoir
need to be tuned to match the intrinsic time scale of the input data. The system’s
dynamics can effectively be tuned by using leaky integrator neurons [9]. Their
states and the readout output are updated as follows:

x[k + 1] = (1 − γ)x[k] + γ tanh (Wr
rx[k] + Wr

iu[k] + Wr
b) (1)

y[k + 1] = Wo
rx[k + 1] + Wo

b, (2)

where u[k] denotes the input at time k, x[k] represents the reservoir state and
y[k] is the output. The weight matrices W∆

∗ represent the connections from ∗
to ∆ between the nodes of the network (where r, i, o, b denote reservoir, input,
output, and bias, respectively). All weight matrices Wr

∗ to the reservoir are
initialized randomly, while all connections to the output Wo

∗ are trained us-
ing standard linear regression techniques. As non-linearity a hyperbolic tangent
function is used. After initialization, Wr

r is normalized by dividing it with its
largest absolute eigenvalue (spectral radius). For linear neurons the spectral ra-
dius should typically be close, but smaller than one. Because of this spectral
radius the system is operating at the edge of stability [9]. The leak rate γ in
(1) controls the time scale of the network [9, 10]. Usually training Wo

∗ is done
offline, in batch mode. In this work, Wo

∗ is trained online using Recursive Least
Squares (RLS). With each iteration the output weights are adjusted so that the
network converges to the desired output:

P[k] = P[k − 1] − P[k − 1]x[k]xT [k]P[k − 1]
(1 + xT [k]P[k − 1]x[k])

, (3)

with P[0] = I
α , x[k] the current states and α constant. P[k] is a running estimate

of the Moore-Penrose pseudo inverse (xT x + ρI)−1. The used training error is

ROBOT
y(t-1)

y(t)

θ(t-1)

RC-network

random θ(t)

Training

 z-1

 z-1

(a)

y(t)

θ(t)RC-network

ROBOT
Testing

yd(t+1)

(b)

iCub

w

y(t-1)

y(t)

y(t)

yd(t+1)

θ(t)

θ(t-1)

θ(t)RC-network
A

RC-network
B

 z-1 z-1

LIMITER

~

~

w

weight
sharing

(c)

Fig. 1. (a) Illustration of a controller method described in the work of Jaeger [12].
During training, random θ(t) values are used to train the output weights of the net-
work based on the corresponding robot response y(t). (b) During testing, the trained
network is used to control the robot according to to the desired trajectory yd(t + 1).
(c) Schematic representation of the proposed controller. The dashed arrows represent
the output weights w which are trained. These are the same for both networks (weight
sharing). The optional limiter bounds θ(t) to a certain range. Afterwards, the bounded
values θ̃(t) drive the robot. The values θ̃(t− 1) are used as desired network output for
RC-network A which are used to train the weights w.

defined as the difference between the generated and desired output d[k]:

e = w[k − 1]x[k] − d[k] (4)
w[k] = w[k − 1] − eP[k]x[k]. (5)

When using RLS these output weights are rapidly and effectively modified. This
behavior satisfies the conditions necessary for the FORCE approach by Sussillo
and Abbott [11]. This approach allows learning with feedback of the actual
output (small errors included) instead of clamping the feedback to the correct
output (no errors) during training.

3 Design of The Controller

The goal of this work is to design a controller which can learn the inverse kine-
matics in the vicinity of the desired trajectory and without any prior knowledge
about the robot system. For most supervised learning techniques, training exam-
ples are generated by a teacher controller, observations in joint and task-space or
an actual inverse kinematic model of the robot. However, in this work no prior
knowledge or model is assumed.

Another approach to learn a good kinematic representation is to use a model
exploration strategy where random motor commands are generated and the cor-
responding robot response is observed. In the work by Jaeger [12], such a strategy

is taken. Here, an RC-network is used which is trained offline by using random
values as training output and the plant response to these values as training in-
put. In this example, the feedback information y is presented to the RC-network
in 2 versions: the current feedback y(t) and a delayed version y(t − 1). Dur-
ing training, also the desired output, which are the random motor commands
θ(t), are delayed one time step before given to the RC-network. As a result,
the network learns to generate the previous output θ(t − 1), given the previous
(y(t − 1)) and current input (y(t)). After training the output weights (dashed
lines in Fig. 1(a)), the desired end-effector position yd(t + 1) is presented to
the input which was connected to y(t) during training. The actual end-effector
position on the other hand, is given to the reservoir input which was connected
with y(t − 1) during training. The output of the network θ(t) commands the
robot.

In this work we want to achieve similar results but in an online manner. The
advantage here is the ability of the controller to readjust the internal model of the
robot to unforeseen changes in the robot or its environment during control. As
shown in Fig. 1(c), a similar RC-network to the one described above (Fig. 1(a))
is used. This network, which we will call RC-network A, is trained online in
a supervised manner by using RLS. Below RC-network A we have a duplicate
network, RC-network B, with the same input, reservoir and output weights
(weight-sharing) as RC-network A. This network is connected to the robot in a
similar manner as described by Jaeger in Fig. 1(b). The output of this network
is not only connected to the robot but is also used (delayed by one time step)
as the desired output for training the output weights. The reservoir states are
initially the same for both networks and are randomly chosen according to a
normal distribution (N (0, 1)). This random initialization causes the robot to
move its arm and generating examples which are spread more evenly over the
solution space. Without this so called motor babbling the samples, used to model
the kinematics, would be clustered which leads to poor generalization. Because
the inputs are not the same for both networks, the corresponding states will
evolve differently. However, as RC-network A is converging to a more accurate
model, the inputs of both networks will become the same with a difference of 1
time step. Because of the desired trajectory in task-space and the current robot
feedback as input, RC-network B starts generating values which are in turn used
to command the robot. Such commands are limited to a certain range according
to the actuators specifications. For instance, when controlling an actuator the
amount of torque that it can deliver is limited. In Fig. 1(c) such limiting is
represented by a limiter which bounds θ(t) to θ̃(t). Delayed by one time step,
these values θ̃(t − 1) are given to RC-network A as the desired output. With
each iteration, the resulting output weights are used for RC-network B.

By applying this topology, RC-network A is learning the controller solely on
the generated examples during actual control. On the contrary, RC-network B
uses the trained parameters to improve the control of the robot based on both
the desired and actual robot response.

0.25
0.2

0.15
00.050.10.150.2

0.08

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

Y2 [m]
Y1 [m]

Y 3 [m
]

desired trajectory
generated trajectory

(a)

500 550 600 650 700 750 800

0.04

0.02

0

0.02

0.04

0.06

Y 3 [m
]

time steps

=1
=0.2
=0.09
=0.02

0 0.05 0.1 0.15 0.2
0.1

0.05

0

0.05

0.1

Y2 [m]

Y 3 [m
]

0 0.05 0.1 0.15 0.2
0.1

0.05

0

0.05

0.1

Y2 [m]

Y 3 [m
]

(b)

Fig. 2. (a) This plot illustrates a generated trajectory after training (gray) together
with the desired trajectory (black). The dots on the generated trajectory are the sample
points. (b, top) Demonstrates the velocity modulation on target point reaching (100
time steps per target point) . (b, bottom) Generalization (dark gray) to different target
points (black dots). The circular dashed line represents the projection of the spiral on
the plain of the target points.

4 Robot Experiments

To evaluate the proposed control strategy we learn a kinematic model of the 7
degree-of-freedom (DOF) iCub robot arm. A“Webots” simulation model of the
iCub robot is used to do the experiments. Here Y1, Y2 and Y3 correspond to
respectively the Z-, X- and Y-axes of the robot’s frame of reference. Encoders
in each joint measure the angular positions. When a joint position is given to
the robot, an internal PID controller will generate the torque necessary to move
the joint to the desired position. Therefore, due to the dynamics of the robot, a
delay between the commanded and recorded position is observed.

4.1 RC-network Setup

RC-network A and B are, except for their input, identical. For choosing the
number of neurons, a trade-off between execution speed and performance has to
be made. In our experiments we used 400 neurons. All the following parameters
are hand tuned. The connection matrix from input to the reservoir (Wr

i) has
elements which are drawn from a normal distribution (N (0, 1.5)). The reservoir
has a connection matrix with values that are drawn from N (0, 1). Other prop-
erties of the reservoir are a spectral radius and a leak rate of 1. In this work
the leak rate will be used to modulate the velocity of the generated trajectory.
The connection of the bias to the readout layer is trained. The connection ma-
trix Wr

b from (1) is drawn from a standard normal distribution and scaled by a
bias-term of 0.5. The robot model is commanded by angular positions in degree.
The network will however, explore this range (within the boundaries set by the

limiter) to find the correct angles. The introduced RLS-parameter α, defined in
Section 2, is set to 1. The initial output weights w(0) are normalized random
values (N (0, 1)).

4.2 Learning Kinematic Model

The desired spiral trajectory in task-space is similar to the one described in [7].
By connecting the proposed controller to the iCub simulation model, the con-
troller will initially drive the robot arm randomly. Thanks to the RLS learning
rule, fast adaptation of the output weights is achieved. As a results, fast learn-
ing of the kinematic model is acquired. After only 1000 time steps (time step
= 270 ms) the robot starts following this spiral trajectory. Most feedback con-
trollers use an error defined on the task-space to achieve the desired behavior.
Although the proposed controller is not designed to minimize this error in task-
space, it converges to the desired trajectory because the internal trained model
corresponds to that of the iCub’s arm. When such a model is achieved we could
choose to continue the training online, learning the inverse kinematics in newly
visited task-space regions. However, to evaluate the trained model at a certain
point in time we will stop the training by setting ∆w = 0 in (5) and evaluate how
well it continuous to follow a desired trajectory without learning. In Fig. 2(a) we
show such generated trajectory of the iCub’s arm (gray), which needs to follow a
spiral trajectory similar (not the same) to the desired trajectory during learning.
As demonstrated, the learned inverse kinematic model corresponds well with the
iCub’s arm for the desired end effector positions. However, because of the phys-
ical limitations of the robot some desired trajectory points, especially the ones
closer to the robot (Y1 < −0.2), are unreachable by the robot.

4.3 Generalization

Next, we investigate the transient and generalization behavior of the learned
kinematic model. Instead of following a spiral trajectory we define some target
corner points that form a specific shape (e.g.: a square or a star). So 4 target
points for a square and 10 for a star. These points are all located on a plane per-
pendicular to the direction of the spiral. Each target point excites the network
for 100 time steps. Afterwards, the next target point is given to the network. In
other words, it is not necessary to follow a square or star trajectory, but the task
is to reach the target corner points of each shape. The target points forming a
square are located on the projection of the learned spiral data (dashed lines). As
shown in Fig. 2(b) (bottom, left) the desired target points are reached. However,
the generated movement between two different target points is demonstrating
transient behavior, that is, it does not follow a straight line (shortest path be-
tween target points) but rather according to an arc (dark gray). The acquired
kinematic model was learned by following a spiral trajectory, never reaching
other regions of the task-space, which explains the transient arc behavior of the
generated motion. The target points forming a star shape are, except for two,

not located on the projection of the spiral trajectory. Although the learned kine-
matic model is based on the data seen while following the spiral trajectory, the
model is generalizing well to the other target points. Fig. 2(b) (bottom, right)
shows small deviations in the reached target points (black dots), but it illustrates
that the learned model generalizes well.

4.4 Modulation

The velocity at which each trajectory point is reached can be modulated after
or while training. We achieve this by changing the leak rate γ of the reservoir
states (1). As described before, changing γ ∈ [0, 1] effectively changes the time
scale of the system. Fig. 2(b) (top) demonstrates the effect of such modulation
for multiple γ’s after learning (∆w = 0) and for different target points (e.g.:
the target points forming the star shape). By decreasing γ, the distance between
each sample point will decrease as well. As shown in the top plot of Fig. 2(b),
the robot is unable to reach the target positions within 100 time steps when
using γ = 0.02.

5 Conclusion

We presented a novel controller based on a recurrent neural network, which is
able to learn the inverse kinematics of the iCub’s robot arm fast, without any
prior knowledge about the robot. By using an internal exploration approach, the
proposed system starts learning a model of the arm. Although there is no error
defined on the actual trajectory, the robot will eventually generate the desired
motion. The system only uses observations of forward kinematic motion gener-
ation to learn a kinematic model of the robot arm. Consequently, the controller
only observes a unique mapping of joint to task-space positions. Bad examples
due to redundancy in the inverse kinematics, are not observed and thus elimi-
nated in the actual control. Both generalization experiments demonstrate that
when online learning is discontinued, the learned inverse kinematic model is re-
stricted to the previously visited regions. Although generalizing well to unseen
task-space regions, the claim of learning a full kinematic model is only valid
when all possible end effector positions are visited during the online learning.
From our experiments transient behavior of the network emerged as arced mo-
tions between the different presented target points. Finally, we demonstrated the
velocity modulation of the controller and its effect on the resulting trajectory. In
future work the applicability of this control approach to more advanced control
tasks will be investigated and compared to classical control approaches.

Acknowledgment

This work was partially funded by a Ph.D. grant of the Institute for the Promo-
tion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)
and the FP7 funded AMARSi EU project under grant agreement FP7-248311.

References

1. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid
robot: an open platform for research in embodied cognition. In: Proc. of the 8th
Workshop on Performance Metrics for Intelligent Systems, pp. 50-56, ACM (2008)

2. Tolani, D., Goswami, A., Badler, N.: Real-time inverse kinematics techniques for
anthropomorphic limbs. Graphical models, vol. 62, 353-388, Elsevier (2000)

3. Grochow, K., Martin, S., Hertzmann, A., Popović, Z.: Style-based inverse kine-
matics. Transactions on Graphics (TOG), vol. 23, 522-531, ACM (2004)

4. D’Souza, A., Vijayakumar, S., Schaal, S.: Learning inverse kinematics. In: Intelli-
gent Robots and Systems, vol. 1, pp. 298-303, IEEE (2001)

5. Peters, J., Schaal, S.: Learning operational space control. Proceedings of Robotics:
Science and Systems (RSS), MIT Press, Philadelphia (2006)

6. Guez, A., Ahmad, Z.: Solution to the inverse kinematics problem in robotics by
neural networks. In: International Joint Conference on Neural Networks, pp. 617-
624, IEEE (1988)

7. Reinhart, R., Steil, J.: Reaching movement generation with a recurrent neural
network based on learning inverse kinematics for the humanoid robot iCub. In:
9th IEEE-RAS International Conference on Humanoids, pp. 323-330, IEEE (2010)

8. Neumann, K., Rolf, M., Steil, J., Gienger, M.: Learning Inverse Kinematics for
Pose-Constraint Bi-Manual Movements. From Animals to Animats 11, 478-488,
Springer (2010)

9. Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applica-
tions of echo state networks with leaky-integrator neurons. Neural Networks, vol.
20, 335-352, Elsevier (2007)

10. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir
computing: theory, applications and implementations. In: Proc. of the 15th Euro-
pean Symposium on Artificial Neural Networks, pp. 471-482, D-side (2007)

11. Sussillo, D., Abbott, L.: Generating coherent patterns of activity from chaotic
neural networks. Neuron, vol. 63, 544-557, Elsevier (2009)

12. Jaeger, H.: A method for supervised teaching of a recurrent artificial neural net-
work. Patent Application, WO 2002/031764 A2 (2002)

