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Abstract

The performance numbers reported by benchmarking
consortia and corporations provide little or no insight into
the performance of applications of interest that are not part
of the benchmark suite. This paper describes data trans-
position, a novel methodology for addressing this ubiqui-
tous benchmarking problem. Data transposition predicts
the performance for an application of interest on a tar-
get machine based on its performance similarities with the
industry-standard benchmarks on a limited number of pre-
dictive machines. The key idea of data transposition is to ex-
ploit machine similarity rather than workload similarity as
done in prior work, i.e., data transposition identifies a pre-
dictive machine that is most similar to the target machine
of interest for predicting performance for the application of
interest.

We demonstrate the accuracy and effectiveness of data
transposition using the SPEC CPU2006 benchmarks and a
set of 117 commercial machines. We report that the machine
ranking obtained through data transposition correlates well
with the machine ranking obtained using measured perfor-
mance numbers (average correlation coefficient of 0.93).
Not only does data transposition improve average correla-
tion, we also demonstrate that data transposition is more
robust towards outlier benchmarks, i.e., the worst-case cor-
relation coefficient improves from 0.59 by prior art to 0.71.
More concretely, using data transposition to predict the
top-1 machine for an application of interest leads to the
best performing machine for most workloads (average defi-
ciency of 1.2% and max deficiency of 24.8% for one bench-
mark), whereas prior work leads to deficiencies over 100%
for some workloads.

1 Introduction

Current practice in benchmarking commercial machines
is to run industry-standard benchmarks and report their per-
formance numbers. This practice is adopted by various

benchmarking consortia and corporations such as EEMBC1

for embedded systems, TPC2 for database systems, and
SPEC3 for high-performance computer systems. The in-
formation obtained from these benchmarking experiments
provides valuable information for comparing existing com-
mercial machines across a broad range of applications.
For example, SPEC provides performance results for var-
ious benchmarks from several application domains such
as compute-intensive workloads, Java workloads, graphics,
web servers, mail servers, network file systems, etc.

Although these benchmarking efforts enable users to
compare computer system performance across vendors for
different types of workloads, they do not provide insight
with respect to which computer system performs best for a
given application of interest that is not part of the bench-
mark suite. In particular, it is unclear which performance
numbers to base a purchasing decision on, i.e., it is unclear
which benchmark is most similar to an application of in-
terest. This is a ubiquitous and long-standing problem in
benchmarking that affects various markets of the computer
industry. For example, a phone company needs to decide
which processor to include in its next-generation cell phone,
however, its software may be very different from what the
EEMBC benchmark suite provides. In addition, the phone
company most likely will not be willing to distribute its
proprietary software to third-party hardware vendors. Sim-
ilarly, an Internet-service provider or a supercomputer host
needs to decide which processors to provide in the data cen-
ter, however, the software that will be run may be very dif-
ferent from what SPEC provides.

Prior work in this area by Hoste et al. [4] approached
this problem by identifying a benchmark or a number of
benchmarks in the benchmark suite that are most similar
to the application of interest, see Figure 1(a). An inherent
problem with this approach is that the application of interest
may exhibit execution characteristics that are very different
from the benchmarks included in the benchmark suite (i.e.,
the application of interest may be an outlier with respect

1http://www.eembc.org
2http://www.tpc.org
3http://www.spec.org
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Figure 1: High-level conceptual comparison between (a) the
approach in the work of Hoste et al. [4] and (b) data trans-
position.

to the benchmark suite), hence, it is unclear how useful the
benchmark suite is for making an accurate performance pre-
diction.

In this paper, we propose a very different technique,
called data transposition. The key idea is to transpose the
data matrix and solve the dual problem of finding the ma-
chine that is most similar to the target machine for pre-
dicting performance for an application of interest, see Fig-
ure 1(b). In other words, instead of finding the benchmark
that is most similar to the application of interest for pre-
dicting performance on a target machine of interest, data
transposition aims at finding the predictive machine that is
most similar to the target machine of interest for predicting
performance for the application of interest. While both ap-
proaches basically solve the same problem, we demonstrate
that data transposition leads to more accurate performance
predictions, the fundamental reason being that data trans-

position enables capturing outlier workload behavior better.
Intuitively speaking, an application of interest that exhibits
outlier behavior on one machine is also likely to exhibit out-
lier behavior on another machine. An empirical model then
extrapolates outlier behavior across machines.

Data transposition assumes a (potentially large) set of
target machines, to which the user has no access but for
which benchmarking results are available for a (limited) set
of benchmarks, e.g., performance numbers published by a
benchmarking consortium such as SPEC. Further, a limited
number of so-called predictive machines are assumed to be
available to the user on which both the benchmarks and the
application of interest can be run. Data transposition then
predicts the performance of the application of interest on
each of the target machines. It does so based on the pub-
lished performance numbers for the target machines and the
benchmarks along with a limited number of measurements
that need to be done on the predictive machines using both
the benchmarks and the application of interest; the method
does not require executing the application of interest on the
target machine. As part of its methodology, data transposi-
tion builds empirical models (i.e., a linear regression model
and a neural network model in this paper) that predict per-
formance on a target machine based on the performance on
a (limited number of) predictive machine(s). The method-
ology then uses the empirical model to predict the perfor-
mance on each of the target machines based on its perfor-
mance on the predictive machines.

Our experimental evaluation using SPEC CPU2006
and performance numbers for 117 commercial machines
demonstrates the method’s accuracy. Data transposition
predicts the ranking of the commercial machines with a
correlation coefficient of 0.93 compared to the ranking ob-
tained with measured performance numbers, whereas prior
art achieves a ranking of 0.86. The top-1 machine according
to data transposition yields a 1.2% performance deficiency
on average (24.8% max) compared to the real top-1 machine
for the given the application of interest. Prior work in this
area by Hoste et al. [4] is accurate as well for most bench-
marks, except for outlier workloads for which we observe
deficiencies over 100%. Furthermore, we demonstrate the
method’s ease of use: we find that only a few predictive ma-
chines are sufficient for making accurate performance pre-
dictions.

This paper is organized as follows. We briefly describe
prior work in this area in the next section. In Section 3, we
then present data transposition and we elaborate on how it
advances beyond prior work. We discuss potential appli-
cations in Section 4. Section 5 discusses our experimental
setup, and we presents the results on the accuracy of data
transposition in Section 6. Finally, we discuss related work
in Section 7 and conclude in Section 8.



2 Prior Work

The problem that motivates this work can be summa-
rized as follows. Assume we have an application of interest
for which we want to rank a set of commercial machines
and predict the best machine or the top-n best performing
machines. We therefore rely on an existing performance
database that is comprised of performance numbers for a
number of benchmarks and machines. The approach taken
by prior work was to exploit the similarity between the ap-
plication of interest and the industry-standard benchmarks
across these machines, so that an informed estimate can
be made for the performance of the application of interest
across the target machines.

In particular, Hoste et al. [4] use performance scores
of a standardized benchmark suite on the target ma-
chines of interest, and in addition, they measure a set of
microarchitecture-independent characteristics for the appli-
cation of interest which they relate to the benchmarks in
the standardized benchmark suite. These microarchitecture-
independent characteristics capture the inherent program
behavior that is unbiased towards a particular microarchi-
tecture. They rely on the notion of similarity between the
application of interest and the benchmarks (in terms of
their microarchitecture-independent characteristics) to pre-
dict the performance of the application of interest. The key
issue in this approach is to determine how differences in
microarchitecture-independent characteristics translate into
performance differences. They use a genetic algorithm to
learn this relationship across a variety of machines. In short,
Hoste et al. use the standardized benchmarks as proxies for
the application of interest based on behavioral similarity.

The framework proposed in this paper is dual to Hoste
et al.’s approach. Whereas they identify the benchmark(s)
most similar to the application of interest to predict per-
formance on a target machine, our approach transposes the
problem and identifies the predictive machine most similar
to the target machine to predict target machine performance
for the application of interest. The intuition behind Hoste et
al.’s approach is that workloads exhibiting similar inherent
program behavior are likely to yield similar performance
across a range of machines. This approach is effective for
applications of interest that show similarity to the bench-
marks in the benchmark suite, however, for applications of
interest that are dissimilar to any of the benchmarks, so-
called outliers, the method is unlikely to yield accurate per-
formance predictions. Data transposition on the other hand
overcomes this inefficiency by building on the notion of ma-
chine similarity: an application of interest that is dissimilar
to any of the benchmarks and that may yield different per-
formance on a particular machine, is also likely to yield dif-
ferent performance on other machines. In other words, an
application of interest exhibiting outlier performance on a
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Figure 2: Problem statement and terminology.

predictive machine is likely to exhibit outlier performance
on the target machines.

In addition to the observation that data transposition
leads to more accurate predictions for applications of in-
terest that are outliers compared to the benchmarks in
the benchmark suite, it does not require time-consuming
profiling runs for collecting microarchitecture-independent
program characteristics as in the Hoste et al. approach.
Through data transposition, a limited number of real hard-
ware runs on the predictive machines is sufficient for mak-
ing accurate predictions on the target machines. This makes
data transposition both faster and more practical.

3 Data Transposition

Before describing data transposition, we first introduce
some terminology and definitions.

3.1 Data set and definitions

Data transposition starts from the two data sets as shown
in Figure 2. In both data sets, the rows represent the bench-
marks and the columns represent the machines.

The data set on the left in Figure 2 comprises perfor-
mance numbers for all the benchmarks as well as for the
application of interest for the so-called predictive machines.
These machines are assumed to be available to the user,
i.e., the user can run the application of interest as well as
the industry-standard benchmarks on these predictive ma-
chines to collect performance numbers. Typically, there are
fewer predictive machines than target machines. The target
machines are not available to the user, hence we only have
performance numbers for the benchmarks on the target ma-
chines, and not for the application of interest.

The data set on the right in Figure 2 is provided by
a benchmarking consortium; in fact, we use performance
numbers from SPEC CPU2006 in our setup, as we will ex-



plain later. It comprises performance numbers for all bench-
marks and all target machines. The goal now is twofold.
First, we want to predict the performance of the application
of interest on each of the target machines. Second, we want
to both rank these machines and identify the best perform-
ing target machine(s) for the application of interest.

3.2 Models for performance prediction

We explore two flavors of empirical models for data
transposition, namely linear regression and neural net-
works.

3.2.1 Linear regression

Linear regression builds a linear regression model for each
target machine with each predictive machine, see also Fig-
ure 3. The regression model that yields the best fit across the
predictive machines for a given target machine is retained;
this model is subsequently used to predict the performance
of the application of interest on that particular target ma-
chine. Put differently, the performance for that target ma-
chine correlates best with the performance of the chosen
predictive machine. Figure 3 illustrates the methodology
through an example: three regression models — since there
are three predictive machines — are built for target machine
#3. In this example, we predict the performance for target
machine #3 with the regression model obtained using pre-
dictive machine #1 — because predictive machine #1 yields
the most accurate linear model for target machine #3. This
procedure is repeated for all target machines, which enables
us to rank the target machines based on the predicted per-
formance numbers. This ranking provides the relative or-
dering of target machines for the application of interest; the
top-1 machine is predicted to yield the highest relative per-
formance.

3.2.2 Neural networks

Neural networks can also be used for performance predic-
tion through data transposition. Neural networks have the
advantage over linear regression models that they can model
non-linear relationships. Figure 4 illustrates how this is
done. The input to the neural network is the performance of
the benchmark applications, and the output is the predicted
performance for the application of interest, on the target ma-
chine. We consider a multi-level perceptron in this work.
We train a neural network using the set of predictive ma-
chines. Training the neural network involves inputting the
performance numbers of the benchmarks on the predictive
machines, and expecting the performance for the applica-
tion of interest at the output. The training algorithm then
learns the neural network to predict the performance for

the application of interest based on the performance num-
bers for the benchmarks. Model training is done using per-
formance data on the predictive machines only. Once the
model is trained, it is used to predict performance for the
application of interest on each of the target machines. In-
tuitively speaking, the neural network learns how the per-
formance of the application of interest relates to the other
benchmarks. The implicit assumption is that this relation-
ship is similar on the target machines as it is on the predic-
tive machines.

4 Potential Applications

We envision several potential applications for data trans-
position.

Guiding purchasing decisions When purchasing a new
computer system, the customer has to rely on published per-
formance numbers as provided by benchmarking consortia
and corporations such as SPEC, EEMBC and TPC. These
numbers however only quantify performance for a number
of a standardized benchmarks. As a result, it is unclear to
which benchmark(s) the application of interest is most sim-
ilar, and by consequence it is unclear which performance
number(s) to base a purchasing decision on. Typically, these
decisions are driven by average performance figures across
the entire benchmark suite, or they are typically based on
presumed similarities across applications from the same ap-
plication domain. Data transposition provides a method-
ology for ranking machines, which enables making better
purchasing decisions, as we will demonstrate later in the
evaluation section of this paper.

Performance prediction of unavailable hardware Pro-
totype hardware or expensive hardware may be hard to
obtain for experimentation and measurement. Data trans-
position provides a solution to performance evaluation on
unavailable hardware, i.e., by comparing the performance
for the application(s) of interest against a benchmark suite
(which is to be run only once on the expensive prototype
hardware), useful performance predictions and assessments
can be obtained.

Fast design space exploration Simulation-based proces-
sor design space exploration is extremely time consuming.
Cycle-accurate simulators typically incur a slowdown com-
pared to real hardware of at least 5 orders of magnitude.
Hence, simulating one minute of real execution time takes
at least two months of simulation time for evaluating a sin-
gle microarchitecture design point. Obviously, exploring
and refining a microarchitecture design at these speeds is in-
feasible. Data transposition may help speedup design space
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Figure 3: Performance prediction through data transposition using linear regression.

exploration: simulating a number of representative bench-
marks in detail on the slow simulator is sufficient to predict
the performance of other benchmarks and applications.

Task scheduling on heterogeneous systems Research
into heterogeneous computer systems is gaining importance
at different levels in the computing range. For example, the
composition of computing nodes in a grid or data center
may be heterogeneous due to upgrades or by design; het-
erogeneity may also be considered to increase the energy
efficiency of a multi-core processor design [8]; or, hetero-
geneity may emerge because of chip technology process
variability in a homogeneous multi-core processor [13]. An
important question in heterogeneous system design is how
to schedule the applications for maximizing overall system

performance. Data transposition may be an enabler to drive
the scheduling algorithm on heterogeneous systems by pro-
viding performance predictions for each of the computing
nodes; the scheduling algorithm can then use these perfor-
mance predictions to yield better schedules.

5 Experimental Setup

5.1 Benchmarks and platforms

Our data set contains reported performance numbers
for a set of industry-standard benchmarks on a number
of commercial machines. In particular, for this study, we
use performance numbers reported for the SPEC CPU2006
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Figure 4: Performance prediction through data transposition using neural networks.

benchmark suite4 which includes 29 integer and floating-
point performance benchmarks. We use the speed ratios
with base optimization, i.e., SPECint base2006 and
SPECfp base2006; these speedup numbers are relative
to a reference SUN Ultra5 10 workstation with a 296MHz
SPARC processor.

We selected 117 commercial machines out of the 1K+
machines that are available on the SPEC website as of Dec
2009. These 117 machines were chosen such that they are
as diverse as possible in terms of their (micro)architecture,
instruction-set architecture, technology node, etc., see Ta-
ble 1. For each processor family, we pick a number of
machines by CPU nickname — different CPU nicknames
reflect differences in microarchitecture, chip technology,
cache sizes, bus speed, etc. For each nickname we include
three machines. For example, our dataset includes 9 AMD
Opteron K10 machines in total, see also the first line in Ta-
ble 1: 3 machines with a Barcelona CPU, 3 with an Istanbul
CPU, and 3 machines with a Shanghai CPU.

4http://www.spec.org/cpu2006/

As we have outlined in Section 3, we require the data set
to be split into two groups: a set of predictive machines ver-
sus a set of target machines. Because the selection of pre-
dictive machines may have significant impact on the over-
all accuracy, we will consider different sets of predictive
machines throughout our experiments. In all of our exper-
iments, we use a cross-validation setup to allow for a fair
evaluation of our methodology. This means there is no over-
lap between the set of predictive versus target machines: for
a given set of predictive machines — a processor family in
this study — we remove those machine types from the set
of target machines, see also Figure 5.

Additionally, we also consider a leave-one-out method-
ology with respect to the benchmarks. This means we pick
a single benchmark out of the benchmark suite — this is our
application of interest — and we build a prediction model
using the remaining 28 benchmarks, see also Figure 5. Once
the model is built, we compare the predicted performance
for the application of interest against its measured perfor-
mance on each of the target machines.



Processor family CPU nickname

AMD Opteron (K10) Barcelona, Istanbul, Shang-
hai

AMD Opteron (K8) Santa Rosa, Troy
AMD Phenom Agena, Deneb
AMD Turion Trinidad
IBM POWER 5 POWER5+
IBM POWER 6 POWER6
Intel Core 2 Allendale, Conroe, Kents-

field, Merom-2M, Penryn-
3M, Wolfdale, Yorkfield

Intel Core Duo Yonah
Intel Core i7 Bloomfield XE
Intel Itanium Montecito
Intel Pentium D Presler
Intel Pentium Dual-Core Allendale
Intel Pentium M Dothan
Intel Xeon Bloomfield, Clovertown,

Conroe, Dunnington,
Gainestown, Harpertown,
Kentsfield, Lynnfield, Tiger-
ton, Tulsa, Wolfdale-DP,
Woodcrest, Yorkfield

SPARC64 VI Olympus-C
SPARC64 VII Jupiter
UltraSPARC III Cheetah+

Table 1: The machines considered in this study sorted by
processor family. Our selection contains 3 machines of each
CPU nickname.

6 Evaluation

We evaluate performance prediction through data trans-
position in three different settings: (i) targeting a processor
family based on performance numbers for other processor
families, (ii) targeting newer machines based on a predic-
tive set of older machines, and (iii) limiting the set of pre-
dictive machines. Throughout the evaluation we refer to the
prior work proposed by Hoste et al. [4] as GA-kNN, as it
involves a genetic algorithm (GA) to learn how to weight
microarchitecture-independent workload differences to per-
formance differences and then derives a performance pre-
diction based on the k nearest neighbors (NN) in the work-
load space; we assume 10 neighbors in our setup (k = 10).
We use the WEKA5 v3 Multilayer Perceptron implementa-
tion with default settings as the neural network. We refer to
the data transposition approach using the T superscript, and
we refer to the linear regression approach as NNT (it selects
the best fitting predictive machine or ‘nearest neighbor’ for

5http://www.cs.waikato.ac.nz/ml/weka/
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Figure 5: Cross-validation and leave-one-out setup: we
eliminate the target machine and application of interest
from the dataset when training the empirical performance
models.

making a prediction) and the neural network approach as
MLPT (as it uses a multi-level perceptron).

6.1 Metrics

We use three different metrics to quantify the accuracy of
data transposition: (i) target machine ranking, (ii) the top-
1 performance prediction error, and (iii) the average per-
formance prediction error. We now briefly discuss each of
these metrics.

Ranking measures the ability of the method to predict
the relative ranking of the target machines. This is done
by first predicting the performance for the application of in-
terest on each target machine. We then rank the machines
according to the predicted performance for the application
of interest. The predicted ranking is then compared to the
actual ranking using the Spearman rank correlation coeffi-
cient. The correlation coefficient ranges between 0 and 1;
a correlation coefficient of one means a perfectly predicted
ranking.

Once a predicted ranking has been obtained, we compare
the speedup of its top machine with the speedup of the ac-
tual top machine, yielding the top-1 error. In Section 4, we
discussed various applications, including the case for guid-
ing purchase decisions. The top-1 error indicates what the
loss in performance would be if a purchase is following the
performance prediction.

The third metric is the average prediction error across all
target machines and benchmarks.

6.2 Predicting another processor family

In the first experiment, we consider a single processor
family as the set of target machines, and we use the ma-
chines from the other families as predictive machines. Fol-
lowing the cross-validation approach outlined in Section 5,
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Figure 6: Spearman rank correlation coefficient for data transposition (NNT and MLPT ) versus prior work (GA-kNN).
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Figure 7: Top-1 prediction error for data transposition (NNT and MLPT ) versus prior work (GA-kNN).

NNT MLPT GA-kNN

Rank correlation 0.85 (0.67) 0.93 (0.71) 0.86 (0.59)
Top-1 error 11.9 (156.7) 1.21 (24.8) 7.30 (104)
Mean error 4.04 (31.81) 1.59 (19.4) 6.25 (51.34)

Table 2: Performance comparison for the different meth-
ods using processor-family cross-validation. Numbers in
bold represent cases where data transposition outperforms
the previously proposed GA-kNN method. Average num-
bers are presented; the numbers between brackets give the
worst case.

we have 17 predictive/target pairs on top of the leave-one-
out cross-validation at the benchmark level. The results are
summarized in Table 2; we aggregated the results across
both the target machines and the benchmarks. Average
numbers are reported as well as worst-case results; the worst
case numbers reports the worst-case result across all target
machines and benchmarks, and are shown between brack-
ets. The MLPT approach beats the other approaches on all
three metrics. Compared to GA-kNN, the NNT approach has
a slightly lower average rank correlation (0.85 vs. 0.86), but
does significantly better in the worst case (0.67 vs. 0.59).
We obtain a similar result for the average error, where NNT

outperforms GA-kNN (4.04 vs. 6.25). These results indi-
cate that approaches based on data transposition are able to

outperform the state-of-the-art when predicting the perfor-
mance of machines with an unseen architecture.

Figures 6 and 7 show the same data on a per-benchmark
basis for the rank correlation coefficient and the top-1 pre-
diction error, respectively. These results show that data
transposition is better capable of accurately predicting per-
formance of outlier benchmarks compared to the previ-
ously proposed GA-kNN approach [4]. In particular, the
leslie3d benchmark is an outlier benchmark compared to
the other benchmarks in the benchmark suite, and the GA-
kNN method has difficulty making an accurate prediction
(i.e., rank correlation coefficient of 0.59). Data transpo-
sition on the other hand improves the predicted ranking
to 0.92. Similarly, for the cactusADM and libquantum
benchmarks, data transposition using neural networks is the
most accurate approach for predicting the top-1 performing
machine, see also Figure 7; data transposition using linear
regression and the prior state-of-the-art approach are highly
inaccurate. These benchmarks are outliers with higher-
than-average SPEC scores, and yields the highest perfor-
mance on an Intel Xeon Gainestown system. The namd
and hmmer are outliers at the opposite side of the spec-
trum: these benchmarks have lower-than-average SPEC
scores, and yield the highest performance on Intel Mon-
tecito processor systems. Both data transposition and the
prior work are accurate at estimating performance for these
benchmarks.



Data transposition using neural networks is more accu-
rate than using linear regression. This is apparent from both
Figures 6 and 7. The reason is that neural networks can
model non-linear relationships, as mentioned before. Both
the average and minimum rank correlation coefficients are
higher for the neural networks compared to linear regres-
sion. Also, data transposition using neural networks is very
accurate when it comes to predicting the top-1 machine.
Whereas GA-kNN and data transposition through linear re-
gression yields prediction errors that are higher than 100%,
data transposition using neural networks brings the error
down to 25% at most for one of the benchmarks; for the
other benchmarks, data transposition using neural networks
predicts the top-1 machine with (near) perfect accuracy.

6.3 Predicting future machines

The previous experiment did not take into account the
release date of the different machines and aimed at predict-
ing the performance of a processor family based on other
processor families, irrespective of their release date. A rel-
evant case in practice might be to predict the performance
for a future processor family. To this end, we now limit the
target machines to those released in 2009, using machines
that were released before 2009 only as the predictive set.
We distinguish three possibilities for the predictive set: the
machines released in 2008, 2007 and pre-2007. This dis-
tinction allows us to see how far into the future a set of
predictive machines can reliably predict performance. The
results are summarized in Table 3, and we briefly discuss
them now.

Predicting one year into the future, (i.e., using the 2008
machines to predict the 2009 machines), works best using
the proposed data transposition approaches. On all three
metrics, data transposition outperforms the previous state-
of-the-art GA-kNN. We obtain an increase in the Spearman
rank correlation from 0.87 to 0.93 and a reduction in top-
1 and mean error from 6.84 and 10.75 to 2.17 and 4.38,
respectively. NNT does somewhat better than MLPT , which
seems to suggest that MLPT is more sensitive to the training
data than NNT .

If we go back one more year (i.e., using the 2007 ma-
chines to predict performance of the 2009 machines), GA-
kNN achieves a better ranking. Note however that this
method does not rely on data from these predictive ma-
chines, and takes only the target machines and the bench-
mark characteristics into account. Even though the pre-
dicted ranking correlates better with the actual ranking un-
der GA-kNN, data transposition does better on the mean
error score. This is the case even for machines predating
2007. The reason why GA-kNN performs relatively better
than data transposition when predicting further in the future
is that GA-kNN bases its prediction on a microarchitecture-
independent characterization of the workloads only, which

is independent of time. Data transposition on the other hand
makes a prediction based on historic performance numbers
from older machines..

From this we conclude that data transposition (both NNT

and MLPT ) are more accurate when predicting into the near
future than GA-kNN. However, when predicting in the dis-
tant future (two years and more ahead), then data transpo-
sition using linear regression (NNT ) is more accurate than
using neural networks. Even though GA-kNN achieves a
better ranking when predicting in the distant future, both
the top-1 and mean error are smaller for data transposition
using linear regression (NNT ).

6.4 Limited number of predictive ma-
chines

We now consider the case where we need to make a per-
formance prediction based on a limited number of predic-
tive machines. The reason is that we need to run bench-
marking experiments on the predictive machines for data
transposition to work, as explained previously. Limiting the
number of predictive machines increases the practicality of
method. To evaluate how well data transposition works con-
sidering a limited number of predictive machines, we set
up the following experiment. The target machines all have
been released in 2009, whereas the predictive machine are
a subset of the machines released in 2008. We use three
subset sizes: 10, 5 and 3.

The results of this experiment are summarized in Ta-
ble 4. As expected, prediction accuracy decreases with a
limited number of predictive machines, however the effect
is relatively small. The MLPT method is most robust to a
decrease in the number of predictive machines: even with
three predictive machines only does MLPT outperform GA-
kNN. NNT suffers more from a limited number of predictive
machines. GA-kNN is able to rank the machines better than
NNT when we use 5 or less predictive machines, but per-
forms worse compared to NNT based on the mean error and
the top-1-error. These results demonstrate that data transpo-
sition (using neural networks) is accurate even when having
access to a limited set of predictive machines only, which
makes the method practical to use.

6.5 Selecting predictive machines

Now that we know that a limited number of predictive
machines is sufficient, the question is how to select these
predictive machines. An easy-to-implement approach is
to select predictive machines randomly. Another approach
may be to select predictive machines such that they maxi-
mize the coverage relative to the target machines. In other
words, by choosing a diverse set of predictive machines one
may maximize the likelihood of finding a similar (close-



(a) MLPT

2008 2007 older

Rank correlation 0.93 (0.71) 0.80 (0) 0.77 (0.49)
Top-1 error 3.78 (50) 9.23 (119) 6.84 (43)
Mean error 5.50 (65.61) 8.10 (70.79) 8.36 (64.89)

(b) NNT

2008 2007 older

0.92 (0.76) 0.82 (0.37) 0.74 (0.31)
2.17 (43) 4.31 (92) 2.07 (29.3)
4.38 (35.16) 9.22 (82.13) 9.22 (53.34)

Table 3: Performance comparison for the different methods predicting the performance for machines from 2009 using older
machines. Numbers in bold outperform the previously proposed GA-kNN method; the numbers between brackets report the
worst case result.

(a) MLPT

Subset size 10 5 3

Rank correlation 0.9 0.89 0.89
Top-1 error 6.17 2.79 3.04
Mean error 5.53 4.93 5.16

(b) NNT

10 5 3

0.87 0.81 0.81
2.17 5.49 5.49
5.17 6.00 6.05

Table 4: Performance comparison for the different methods predicting the performance for machines from 2009 using a small
subset from the 2008 machines. The numbers in bold indicate cases where data transposition outperforms the previously
proposed GA-kNN method.
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Figure 8: Comparing random selection versus k-medoid
clustering for selecting predictive machines through MLPT .
For the random case, 50 random selections were averaged.

enough) (set of) predictive machine(s) for each target ma-
chine. This may improve the accuracy of the performance
prediction, and hence, it could be viewed of as the best pos-
sible approach. We implement this approach by choosing
the predictive machines through k-medoid clustering, which
randomly selects k cluster centers (predictive machines),
initially, and groups all the remaining machines to their
closest cluster. Assigning machines to clusters changes the
centroids of the clusters, hence, different machines emerge
as cluster centers (i.e., a new set of predictive machines is
constructed), after which new cluster centers need to be de-
termined, etc. This process is iterated until convergence or
steady-state, i.e., all machines are assigned to a cluster and

cluster membership does not change across iterations of the
algorithm. The cluster centers then are the predictive ma-
chines. This results in a diverse set of machines, for exam-
ple an Intel Core 2, Pentium D Presler, Xeon Gainestown
and a SPARC 64 VII when selecting 4 predictive machines.
Figure 8 shows the goodness of fit for random selection ver-
sus k-mediod clustering as a function of the number of pre-
dictive machines for MLPT . The key observation from this
graph is that k-medoid clustering outperforms random se-
lection by over a factor two, e.g., two predictive machines
selected by k-medoid clustering achieve a better fit (0.714)
than five randomly selected machines (0.705).

7 Other Related Work

We now discuss other related work beyond the prior
work discussed in Section 2.

7.1 Empirical performance modeling

Empirical modeling leverages statistical inference and
machine learning techniques such as regression modeling or
neural networks to automatically learn a performance model
from training data. Joseph et al. [6] apply linear regres-
sion to processor performance analysis: they build linear
regression models that relate micro-architectural parameters
(along with some of their interactions) to overall processor
performance. Joseph et al. only use linear regression to test
microarchitecture design parameters for significance, i.e.,
they do not use linear regression for predictive modeling.



Linear regression assumes that the response variable be-
haves linearly with its input variables. This assumption is
often too restrictive. Lee and Brooks [9] advocate spline-
based regression modeling in order to capture non-linearity.
A spline function is a piecewise polynomial used in curve
fitting. A spline function is partitioned in a number of inter-
vals with different continuous polynomials.

An artificial neural network is an alternative approach
for building an empirical model. Neural networks are ma-
chine learning models that automatically learn to predict (a)
target(s) from a set of inputs. The target typically is per-
formance and/or power or any other metric of interest, and
the inputs typically are microarchitecture parameters. Neu-
ral networks could be viewed of as a generalized non-linear
regression model. Several groups have explored the idea
of using neural networks to build performance models, see
for example Ipek et al. [5], Dubach et al. [1] and Joseph
et al. [7]. Lee et al. [10] compare spline-based regression
modeling against artificial neural networks and conclude
that both approaches are equally accurate; regression mod-
eling provides better statistical understanding while neural
networks offer greater automation.

All of this prior work shares the commonality that it aims
at predicting performance for a target machine for a given
set of benchmarks. Their goal is to drive architecture de-
sign space exploration. We are addressing a related but very
different problem: we aim at predicting performance for a
target machine for a novel workload; this could be viewed
as joint workload/architecture exploration.

7.2 Program similarity

Several researchers have proposed methods for quan-
tifying program similarity. Saavedra and Smith [12] use
the squared Euclidean distance computed in a benchmark
space built up using dynamic program characteristics at
the Fortran programming language level such as operation
mix, number of function calls, number of address com-
putations, etc. Yi et al. [14] use a Plackett-Burman de-
sign for classifying benchmarks based on how the bench-
marks stress the same processor components to similar de-
grees. Eeckhout et al. [3] use principal component analysis
to identify similarities across programs. The input given
to the principal component analysis can be microarchitec-
ture-dependent [2], microarchitecture-independent [11] or
mixed of both [3]. The work described in this paper goes
one step further and aims at exploiting program similiarity
and dissimilarity to make performance predictions for new
workloads.

8 Conclusion

The ubiquitous problem in benchmarking is to predict
the performance of an application of interest on a set of tar-
get machines the user does not have access to. This paper
presented data transposition, a novel method for doing so. It
builds empirical models for predicting performance across
machines using a standard set of benchmarks. By building
such models for a limited number of predictive machines
and a (potentially) large set of target machines, data trans-
position allows for predicting performance of an applica-
tion of interest on a set of target machines by running it
on the predictive machines only. The intuition behind data
transposition is that if a workload is (dis)similar to a set of
benchmarks on (a) predictive machine(s), it is likely to be
proportionally (dis)similar on a target machine. An empir-
ical model is trained to learn how workload (dis)similarity
translates into performance differences on actual hardware.

Our experimental results demonstrate the method’s accu-
racy: the ranking achieved through data transposition cor-
relates well with the real ranking (average rank correlation
coefficient of 0.93) across a set of 117 commercial machines
using the SPEC CPU2006 benchmark suite. We also found
that only a few predictive machines are sufficient for achiev-
ing accurate predictions. Further, the top-1 machine can be
predicted with a 1.2% average prediction error (and 24.8%
max error for one workload); in contrast, state-of-the-art
method proposed by Hoste et al. [4] leads to errors above
100% for some workloads. A key benefit of data transpo-
sition is that it can better predict outlier workload perfor-
mance.
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