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Abstract

One of the latest research topics in ge-
ographic information systems (GIS for
short) is the modeling of fuzzy (impre-
cise or vague) and/or uncertain infor-
mation. A GIS usually contains large
amounts of data and requires very spe-
cific operations to manage (geographic)
data, both of which are described in a
geographic database model. In this pa-
per, the basic concepts for a data model
describing the structure of and opera-
tions on fuzzy or uncertain geographic
information are presented. Specific for
the presented model is the adaptation of
triangulated irregular networks (TINs),
commonly used in GIS (e.g. to model al-
titudes), for the modelling of fuzzy (ge-
ographic) data.

Keywords: triangulated irregular net-
works, fuzzy geographic database, fuzzy
gis.

1 Introduction

An important research topic in geographic infor-
mation systems is the modeling of fuzzy and/or
uncertain (geographic) information [1],[2]. An in-
teresting aspect is the modelling of vague regions
which allow to describe the extent to which a
given property applies for a given set of points
in space (e.g. the extent to which a given loca-
tion can be considered as densely populated [3].
There have been an number of publications de-
scribing techniques to model vague regions. Most

of these techniques use broad boundaries, which
are mostly defined by means of contour lines and
traditional buffer-operations [4]. Broad bound-
aries defined by the use of two (e.g. the egg-yolk
theory [5], [6]) or more [7], [8] contour lines do not
allow for an easy definition of some of the opera-
tors: it turns out to be quite difficult to correctly
define operators that result in a closed algebra
(e.g. the intersection of two regions specified by
contour lines is difficult —if possible— to repre-
sent as a new region defined by contour lines).

In this paper a method is presented, in which con-
tour lines are no longer used; instead the fuzzy
information is modelled by means of a TIN-based
layer. This makes sense since a GIS usually works
with layers to store different kinds of data: for in-
stance, it could contain a layer that contains in-
formation about altitudes, another layer contain-
ing population-densities, etc. These layers can
be combined (called an overlay), for example to
calculate the result of a query. The use of Trian-
gulated Irregular Networks allows —as presented
in this paper— for a closed definition of various
operators.

2 Outline of the approach

Unlike other models that use some form of con-
tour lines [4],[5],[6],[7],[8], the presented model
uses a Triangulated Irregular Network [9],[12] to
represent (fuzzy) information about geographic
regions. TINs are used in traditional geographic
databases to model crisp geographic data, such
as altitudes. In the presented model, the same
TIN structure is used, but now adapted for the
modelling of vague regions. To deal with fuzzi-
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ness and uncertainty, fuzzy set theory will be used
[10]. More specifically, membership grades (in the
interval [0, 1]) will be associated with the points
on which the TIN-based layer is built (hereafter
referred to as data-points). The existing inter-
polation techniques can be maintained, but some
new operators (e.g. intersection and union) need
to be introduced.

The membership grades associated with the data-
points of a single layer are either all interpreted
as degrees of (un)certainty or all interpreted as
degrees of preference [11]. If interpreted as de-
grees of (un)certainty, the membership grades de-
note the extent to which it is (un)certain that a
given proposition is valid for these data-points,
e.g. to model the position of an object within a
given area. If interpreted as degrees of prefer-
ence, the membership grades denote the extent
to which a given property applies for these data-
points (e.g. the extent to which a given location
can be considered as densely populated). Several
layers can be used to model the information about
a given area; one layer representing for example
the extent to which the area can be considered as
densely populated and another one representing
the uncertainty about the position of an object in
this same area. The combination of these two lay-
ers then provides for example information about
the position of an object within a (non)densely
populated area.

It should be noted that the association of mem-
bership grades with data-points imposes some
limitations on the model: uncertainty about the
membership grades themselves cannot be mod-
eled. For some applications (e.g. approximate
temperature measurements), this feature would
be beneficial. An extension of the presented ap-
proach, based on fuzzy sets of type 2 [14], is cur-
rently under research.

3 ETIN: structure and operators

3.1 Structure

The definition of a TIN is based on a triangular
partition of two dimensional space. No assump-
tion is made on the distribution an location of
the vertices of the triangles [9]. In general, the
structure of a TIN Tini is defined by three finite

sets: a set Pi of points upon which the TIN is con-
structed, a set Ei of edges and a set Ti of triangles
(the tiles of the TIN), i.e.

Tini = (Pi, Ei, Ti)

The TINs used in the presented model, are gen-
erated by means of a Delaunay triangulation [12].
A Delaunay triangulation of a set of points Pi is
a triangulation of Pi with the property that no
point in Pi falls in the interior of the circumcir-
cle (circle that passes through all three vertices)
of any triangle t ∈ Ti in the triangulation. This
uniquely determines the sets Ei and Ti. A vari-
ation of the Delaunay triangulation is the con-
strained Delaunay triangulation [13], which addi-
tionally allows the specification of a subset E of
edges that need to be included in the final set Ei.
The TIN structure is used because it offers some
advantages when interpolating: due to the De-
launay triangulation algorithm, the tiles resemble
the unilateral triangle as close as possible, thus
avoiding degenerate cases (e.g. narrow, sharp
triangles). The constrained Delaunay triangula-
tion no longer has this property, and is —strictly
speaking— not a Delaunay triangulation.

In the presented model, the TIN structure is ex-
tended with a mapping function fi which char-
acterizes a geographically dependent feature Fi,
e.g. Fi might represent the feature densely popu-
lated. The structure of an extended TIN ETini is
defined by a TIN structure Tini and a mapping
function fi, i.e.

ETini = [(Pi, Ei, Ti), fi]

where fi is defined as

fi : Pi → [0, 1] : p(x, y) 7→ fi(p(x, y))

An ETIN-structure ETini can be viewed as a
three dimensional representation of a vague re-
gion. The X and Y axes are interpreted as the
domain-axes of the two dimensional space and the
Z axis represents the membership grades. These
are obtained from the membership function µfi

derived (by lineair interpolation) from the map-
ping function fi as follows



µfi
: U → [0, 1]

p(x, y) 7→
{

fi(p(x, y)) if p(x, y) ∈ Pi

−A
C x− B

C y − D
C otherwise

where U represents the two dimensional space and
A, B, C and D are the parameters of the equa-
tion Ax + By + Cz + D = 0 of the plane going
through the three points p1(x1, y1), p2(x2, y2) and
p3(x3, y3) of the triangle in which the point p(x, y)
is located, i.e.

A = y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2)
B = z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2)
C = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)
D = −Ax1 −By1 − Cz1

with zj = fi(xj , yj), j = 1, 2, 3. The case where
C = 0 cannot occur, as this would imply the
points p1, p2 and p3 to be co-lineair, in which
case they would never be chosen in a Delaunay
triangulation as a triangle.

3.2 Operators

As the model would be useless without appro-
priate operators, the definitions for the various
operations on membership functions must be ex-
tended. For example, it should be possible to ag-
gregate information contained in different ETIN-
structures, as well as perform comparisons and
calculate intersections and unions.

3.2.1 Approach using Delaunay
triangulation

Suppose we have two ETIN-structures ETin1 and
ETin2, which for the sake of argumentation are
defined as illustrated in resp. Figure 1 and Fig-
ure 2. (As a shorthand notation, the data-points
of an ETIN are denoted as pj(xj , yj , fi(xj , yj)),
whereas an edge ek connecting the points pl and
pm is denoted as ek(pl, pm).) Generally, their
data-points need not be on the same location, nor
do they need to have the same number of data-
points. As an example we shall use min and max
as t-norm resp. t-conorm 1.

1The fact that an ETIN uses triangles has in itself noth-
ing to do with triangular norms/conorms.

p1(0, 0, 0) e1(p2, p1)
p2(0, 100, 1) e2(p1, p5)
p3(100, 0, 1) e3(p5, p2

p4(100, 100, 0.5) e4(p5, p3)
p5(40, 60, 0.6) e5(p3, p4)

e6(p4, p5)
e7(p1, p3)
e8(p4, p2)

Figure 1: ETin1

p1(0, 0, 0) e1(p2, p1)
p2(0, 100, 1) e2(p1, p5)
p3(100, 0, 1) e3(p5, p2)
p4(100, 100, 0.5) e4(p5, p3)
p5(60, 60, 0.6) e5(p3, p4)

e6(p4, p5)
e7(p1, p3)
e8(p4, p2)

Figure 2: ETin2

The minimum of ETin1 = [(P1, E1, T1), f1] and
ETin2 = [(P2, E2, T2), f2] (with associated mem-
bership functions resp. µf1 and µf2) is by def-
inition obtained by considering the minimum
min(µf1(p(x, y)), µf1(p(x, y))) of the membership
grades of each point p(x, y) in the two dimensional
space.

A computable definition can be derived by using
the actual definitions of both ETINs. In the in-
tersection of the triangles of both ETINs, the set
Pt of relevant points is determined by calculating
the equations for the edges and triangles (which
are obtained through basic geometry).

Pt is obtained as the union of the set of the points
that result from the intersection of the triangles
in ETin1 and the edges in ETin2, and the set of
points that result from the intersection of trian-
gles in ETin2 and the edges in ETin1 (in case
an intersection contains line segments, only the
endpoints of these segments are considered).

The minimum will then be a new ETIN ETin3 =
[(P3, E3, T3), f3], defined by the points

P3 = Pt∪
{p(x, y) ∈ P1|µf1(p(x, y)) ≤ µf2(p(x, y))}∪
{p(x, y) ∈ P2|µf2(p(x, y)) ≤ µf1(p(x, y))}



p1(0, 0, 0) e1(p1, p3)
p2(0, 100, 1) e2(p3, p2)
p3(100, 100, 0) e3(p1, p2)
p4(100, 0, 1) e4(p3, p4)

e5(p1, p4)

Figure 3: ETin1′

p1(0, 0, 1) e1(p2, p1)
p2(0, 100, 0) e2(p1, p4)
p3(100, 100, 1) e3(p4, p2)
p4(100, 0, 0) e4(p4, p3)

e5(p3, p2)

Figure 4: ETin2′

At first sight, it seems to be sufficient to determine
P3, and use the Delaunay triangulation-algorithm
to calculate the edges (and triangles). However it
turns out that the result is not always what is
expected: due to the Delaunay triangulation, it is
possible that some generated edges will not match
the minimum.

This can be illustrated with a simple example;
consider two ETINs ETin1′ and ETin2′ , as de-
fined in Figures 3 and 4).

The minimum as obtained by calculating the set
P3 with the method described above (Figure 5),
does not equal the exact minimum (Figure 6).

This is due to the fact that the Delaunay triangu-
lation algorithm generates a set of edges (and tri-
angles) which does not contain the expected min-
ima. E.g. the edges e2(p2, p3) and e12(p5, p4) (Fig-
ure 5) are generated instead of the edges e2(p1, p6)
and e12(p1, p7) (Figure 6). This can also be ver-
ified by considering the point p(25, 25) with in-
terpolated membership grades µf1′ (p(25, 25)) =
µf2′ (p(25, 25)) = 0. The minimum of those mem-
bership grades is clearly 0, which should be the
membership grade of p(25, 25) in the resulting
ETIN. However, in ETin3′ the interpolated mem-
bership grade µf3′ (p(25, 25)) equals 0.5.

p1(50, 50, 0) e1(p6, p2)
p2(50, 0, 0.5) e2(p2, p3)
p3(0, 50, 0.5) e3(p3, p6)
p4(100, 50, 0.5) e4(p1, p8)
p5(50, 100, 0.5) e5(p8, p3)
p6(0, 0, 0) e6(p3, p1)
p7(100, 100, 0) e7(p2, p1)
p8(0, 100, 0) e8(p1, p9)
p9(100, 0, 0) e9(p9, p4)

e10(p4, p1)
e11(p2, p9)
e12(p5, p4)
e13(p4, p7)
e14(p7, p5)
e15(p5, p1)
e16(p5, p8)

Figure 5: ETin3′ , obtained through an incorrect
calculation of min(ETina, ET inb)

3.2.2 Approach using constrained
Delaunay triangulation

A solution to this problem is to use the
constrained Delaunay triangulation algorithm,
hereby considering the set P3 and a set of pre-
defined edges E. With the understanding that
Et consists of the edges obtained through the in-
tersection (Figure 7) of the triangles of the two
ETINs ETin1 and ETin2 and Pt being the set of
points as previously defined, E is defined as

E = Et ∪ {e(p1, p2)|p1 ∈ Pt ∧ p2 ∈ P3 \ Pt ∧
(∃ e′(p′1, p

′
2) ∈ E1 ∪ E2 : e(p1, p2) ⊆ e′(p′1, p

′
2))}

An important property of the set of edges E as de-
fined above, is that from it a set of adjacent (non
overlapping) planar polygons can be constructed.
For example, with respect to Figure 8, eight ad-
jacent planar polygons can be constructed, e.g.
the one in the upper-left corner, being defined
by the edges e1, e2, e12, e16, e17 (or by the points
p1, p2, p3, p11, p13). The constrained Delaunay tri-
angulation algorithm when applied to a planar
polygon results in a planar triangulation thereby
avoiding the problems occurring with the regular
Delaunay triangulation on the set P3.

By applying the constrained Delaunay triangula-
tion algorithm on the sets P3 and E, the ETIN
ETin3 = [(P3, E3, T3), f3] (Figure 9) is con-
structed. Using the same technique to calculate



p1(50, 50, 0) e1(p2, p1)
p2(50, 0, 0.5) e2(p1, p6)
p3(0, 50, 0.5) e3(p6, p2)
p4(100, 50, 0.5) e4(p1, p8)
p5(50, 100, 0.5) e5(p8, p3)
p6(0, 0, 0) e6(p3, p1)
p7(100, 100, 0) e7(p3, p6)
p8(0, 100, 0) e8(p1, p9)
p9(100, 0, 0) e9(p9, p4)

e10(p4, p1)
e11(p2, p9)
e12(p1, p7)
e13(p7, p5)
e14(p5, p1)
e15(p4, p7)
e16(p5, p8)

Figure 6: ETin4′ , obtained through a proper cal-
culation of min(ETina, ET inb)

the minimum min(ETin1′ , ET in2′) (Figure 3 and
4), yields the correct ETIN ETin4′ as shown on
Figure 6.

The max-conorm is defined in a completely simi-
lar way.

4 Conclusions and future work

A new approach for modelling of vague regions
which allow to describe the extent to which a
given property applies for a given set of points in
space, is presented. Central to the approach is the
use of extended triangulated irregular networks,
which extend the traditional concept of triangu-
lated irregular networks with a mapping function
used to define a membership function over a geo-
graphic area. A technique to determine the mini-
mum (as an example of a t-norm) of ETINs is dis-
cussed. Constrained Delaunay triangulation pro-
vides for an appropriate and correct definition of
this operator.

Within the presented approach, membership
grades are used to represent the extent to which
a given property applies for a given set of points.
In practice, it may occur that there exists uncer-
tainty about the values of the membership grades
themselves; part of the ongoing research deals
with the generalization of the model by means
of fuzzy sets of type 2. This extension could
also be adapted to model imprecise measurements

p1(37.5, 56.25, 0.5625) e1(p1, p2)
p2(0, 50, 0.5) e2(p1, p3)
p3(50, 50, 0.66667) e3(p5, p3)
p4(100, 50, 0.75) e4(p6, p7)
p5(66.66667, 0, 0.66667) e5(p8, p6)
p6(57.1429, 71.4286, 0.571429) e6(p4, p7)
p7(62.5, 62.5, 0.625)
p8(66.66667, 100, 0.66667)

Figure 7: Et, the intersection points and edges of
(ETin1, ET in2).

and different geographic locations (e.g. inaccu-
rate temperature measurements). Another inter-
esting extension would be to allow for other norms
and co-norms besides min and max; this is cur-
rently also under research.
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Caluwe (2002). Contourline Based Modelling
of Vague Regions. Accepted for 9th Interna-
tional Conference IPMU 2002.

[9] Philippe Rigaux, Michel Scholl, Agnès Voisard
(2002). Spatial Databases with Applications to
GIS. Morgan Kaufman Publishers.

[10] Didier Dubois, Henri Prade (2000). Funda-
mentals of Fuzzy Sets. Kluwer Academic Pub-
lishers.

p1(37.5, 56.25, 0.5625) e1(p1, p9)
p2(0, 50, 0.5) e2(p9, p1)
p3(50, 50, 0.66667) e3(p1, p2)
p4(100, 50, 0.75) e4(p3, p9)
p5(66.66667, 0, 0.66667) e5(p9, p5)
p6(57.1429, 71.4286, 0.571429) e6(p5, p3)
p7(62.5, 62.5, 0.625) e7(p3, p1)
p8(66.66667, 100, 0.66667) e8(p1, p13)
p9(0, 0, 0) e9(p13, p11)
p10(100, 100, 0.5) e10(p11, p1)
p11(0, 100, 0) e11(p11, p2)
p12(100, 0, 0.5) e12(p6, p11)
p13(60, 60, 0.6) e13(p13, p6)

e14(p6, p8)
e15(p8, p11)
e16(p3, p13)
e17(p12, p4)
e18(p4, p13)
e19(p13, p12)
e20(p5, p13)
e21(p7, p8)
e22(p6, p7)
e23(p7, p13)
e24(p4, p7)
e25(p10, p8)
e26(p7, p10)
e27(p4, p10)
e28(p5, p12)

Figure 9: ETin3, minimum of (ETin1, ET in2),
after triangulation.

[11] Didier Dubois, Henri Prade (2001). Possibil-
ity theory, probability theory and multiple-
valued logics: A clarification. Annals of Math-
ematics and Artificial Intelligence, volume 32,
pages 35-66.

[12] Jonathan Richard Shewchuk (1996). Trian-
gle: Engineering a 2D Quality Mesh Gen-
erator and Delaunay Triangulator. In First
Workshop on Applied Computational Geome-
try (Philadelphia, Pennsylvania), Association
for Computing Machinery, pages 124-133.

[13] Jonathan Richard Shewchuk; Constrained
Delaunay Tetrahedralizations and Provably
Good Boundary Recovery ; 2002; Submit-
ted to the Eleventh International Meshing
Roundtable.

[14] Jerry M. Mendel (2001). Uncertain Rule-
Based Fuzzy Logic Systems, Introduction and
New Directions. Prenctice Hall PTR.


