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Abstract. In the concept of fuzzy regions we introduced before, a region
was considered to be a fuzzy set of points, each having its own member-
ship grade. While this allows the modelling of regions in which points
only partly belong to the region, it has the downside that all the points
are considered independently, which is too loose a restriction for some
situations. The model is not able to support the fact that some points
may be linked together. In this contribution, we propose an extension to
the model, so that points can be made related to one another. It will per-
mit the user to, for instance, specify points or even (sub)regions within
the fuzzy region that are linked together: they all belong to the region
to the same extent at the same time. By letting the user specify such
subregions, the accuracy of the model can be increased: the model can
match the real situation better; while at the same time decreasing the
fuzziness: if points are known to be related, there is no need to consider
them independently. As an example, the use of such a fuzzy region to
represent a lake with a variable water level can be considered: as the
water level rises, a set of points will become flooded; it is interesting to
represent this set of points as a subset of the region, as these points are
somewhat related (the same can be done for different water levels). The
impact of this extension to the model on both surface area calculation
an distance measurement are considered, and new appropriate definitions
are introduced.

1 Introduction

The concept of the fuzzy regions was sparked by a lack of models capable of
handling imperfect information, built on a solid, theoretical foundation, appli-
cable for a wide range of representations and open to an implementation. In the
presented concept, a fuzzy region was defined as a fuzzy set of points over the
two dimensional domain. Each point therefore is given a membership grade indi-
cating the extent to which it belongs to the region (i.e. a veristic interpretation
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[1]). While this broad definition is useful for many basic applications and allows
for unlimited distributions of membership grades over the region, it treats all the
elements independently of one another. In some situations however, it is possible
a user has more information about a relation between elements of the region.
Consider the example of a lake, where there is a variation possible in the level of
water. At a random point in time we may not know the water level, but we do
know that if a particular point would be under the water, so would other points
(i.e. those at the same altitude just around the lake). If the likeliness of that
water level is 0.4, then it makes sense to assign all these points that membership
grade; however, as these points would be be at the same altitude, it is more
natural not to consider them independently but rather as a group the points.

In this paper, a brief overview of the current model for fuzzy regions is given
in section 2. Both the concept and the operations that are will be extended
are considered here. Section 3 then deals with the proposed extension to fuzzy
regions and the impact on the considered operations. The results are summarized
in the conclusion.

2 Current fuzzy regions

2.1 Concept

A crisp region is often defined by means of its outline: a polygon or other closed
line is defined as the boundary of the region, and the region is said to consist of
the points inside this outline ([3]). To define fuzzy regions, a different point of
view was adopted: rather than consider a crisp region to be defined by means of
an outline, it was considered to be be a set of points. From this point of view,
it is a small step to augment the definition to a fuzzy set ([8], [9]) of points.
In [5], the fuzzy region was defined over R

2, thus with each element (point) a
membership grade was associated.

Definition 1 (Fuzzy region).

R̃ = {(p, µR̃(p))|p ∈ R
2} (1)

A fuzzy region essentially is a fuzzy set defined over a two dimensional domain.
As a result, the traditional fuzzy operations for intersection and union (by means
of t-norms and t-conorms) are immiately applicable. Functionaly has been added
to deal with spatial aspects, some examples include the distance between regions
and the (fuzzy) surface area of a region. To determine topological relations how-
ever, appropriate definitions for the boundary, interior and exterior had to be
derived from the initial given fuzzy set.

2.2 Operations

Surface area: cardinality For the surface area of fuzzy regions, two definiti-
tions have been introduced ([6]). The first is an application of fuzzy cardinality,
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where each point is said to contribute its own membership grade.

S̃c(Ã) =

∫

p(x,y)∈U

µÃ(p(x, y))d(x, y) (2)

Where U is the considered universe (usually R
2).

This definition has the advantage of yielding a crisp number that takes the
fuzziness into account. The crisp number can easily be used in systems that
cannot deal with fuzzy data.

Surface area: fuzzy number The second definition for surface area yields
a fuzzy number, such that all possible surface areas are possible values. This
approach has the advantage of yielding a result that holds more information than
the cardinality approach above, but it requires working with fuzzy numbers. For
each possible surface area, the membership grade matches the possibility of the
region being a region of this size. This is achieved by considering the surface
area of all α-levels.

S̃f (Ã) = {(x, µS̃f (Ã)(x)), x ∈ U} (3)

where U is the considered universe, most likely R
2. For fuzzy regions defined as

fuzzy sets over R2, the membership function was defined as:

µS̃f (Ã)(x) : R → [0, 1]

x 7→







1 if x = S(Ã1)

sup{α | S(Ãα) ≤ x ≤ S(Ãα)} if S(Ãα) ≤ x ≤ S(Ãα)
0 elsewhere

Distance There are various options to define the distance between crisp regions;
the most common one is the euclidean distance which represents the shortest
distance between both regions. For fuzzy regions, the fuzzy distance d̃(R̃1, R̃2)
is a fuzzy number representing the possible distances between the α-cuts of R1

and R2.
d̃(R̃1, R̃2) = {(x, µd̃(R̃1,R̃2)

(x)) | x ∈ R} (4)

where

µd̃(R̃1,R̃2)
: R → [0, 1]

x 7→ sup{α | d(R̃1α, R̃2α) ≤ x ≤ d(R̃1α, R̃2α)}

3 Extended fuzzy regions

3.1 Concept

The main problem with the above model is that all points are considered indi-
vidually. In many applications, it would be beneficial to group elements of the
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fuzzy set together. In order to do this, the fuzzy set defining the region will be
defined over the domain ℘(R2); i.e. the powerset of R2. The powerset of a set is
a new set containing all the possible subsets of that particular set. To illustrate
this, consider the following example:

℘({0, 1, 2}) = {{}, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}

For R2 this becomes:

℘(R2) =
{

X |X ⊆ R
2
}

At present, we are only considering the powerset over R
2 as a means to

further model the distribution of membership grades in fuzzy regions. The use
of the fuzzy powerset over R

2 (i.e. ℘̃(R2), the set of all fuzzy sets over R
2) is

also under consideration, as it may allow the model to cope with more complex
distributions of membership grades, but at an increased complexity. Definition
2 shows the new definitions for fuzzy regions.

Definition 2 (Fuzzy region).

R̃ = {(P, µR̃(P ))|P ∈ ℘(R2) ∧ ∀P1, P2 ∈ R̃ : P1 ∩ P2 = ∅} (5)

Note that it is required that no two elements of the fuzzy region share points:
the intersection between any two elements should be empty. A point can only be
considered to belong to the region once, even if it is to a membership grade less
than 1. An extension of this is under investigation, but is not elaborated upon
for now. With each element of the fuzzy set, a membership grade is associated;
it still has a veristic interpretation to indicate the degree to which this element
belongs to the fuzzy region. Before considering the impact of this new definition
on operations, it is interesting to verify that the model is a generalization of
the previous model, and that it still is capable of representing fuzzy regions as
defined before. A fuzzy region R̃1, defined as:

R̃1 = {(p, µR̃1
(p))|p ∈ R

2}

can be defined using this new definition as a fuzzy region R̃, by using an appro-
priate membership function:

R̃2 = {(P, µR̃2
(P ))|P ∈ ℘(R2)}

where

µR̃2
(P ) =

{

µR̃1
(p) if P = {p}

0 elsewhere

The requirement that two elements need to be disjoint is automatically fulfilled
by the given membership function.
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3.2 Operators

The change in definition will of course impact the operators that have been
defined. In [7], we presented two definitions for the surface area of fuzzy regions:
the first is an extension of fuzzy cardinality (each point basically contributes its
membership grade to the total area), which yielded a crisp number; whereas the
second results in a fuzzy number representing the possible surface areas for the
region. Both definitions (2.2) will now be adapted to suit the new definition. For
the distance between fuzzy regions, two approaches have been considered: one
using the α levels, and one based on topological aspects. In this contribution,
only the first approach is considered, as topological aspects are currently under
development.

Surface area: cardinality While the meaning of the original definition (each
element contributing its membership grade) remains the same, the present formal
definition as shown in (2) needs to be changed slightly to deal with the fact that
the basic elements of the fuzzy region are now sets rather than points. Each
element will once again contribute to the extent of its membership grade, but
the elements themselves are now possibly larger than a single point. As a result,
the surface areas of each basic element also needs to be taken into consideration:

Definition 3 (surface area (cardinality)).

S̃c(Ã) =

∫

X∈℘(U)

µÃ(X)

∫

p(x,y)∈X

d(x, y)dX (6)

This definition yields the same result as the previous definition if all basic ele-
ments are singleton sets.

Surface area: fuzzy number The surface area as a fuzzy number is impacted
in a far greater way: a given set that is an element of the fuzzy region will
contribute its area, or won’t contribute at all, with nothing in between. Con-
sequently, there is a smaller number of possible surface areas; as illustrated on
figure 1. Figure 1a shows a fuzzy region in the classical definition and its surface
area: each point may or may not belong to it, so it may or may not play a part
in determining the surface area. The surface area is also shown, and every area
between 0 and 2x is a possibility. Figure 1b shows a similar fuzzy region, but
now the regions consists out of 2 sets: one set which is given membership grade
1, and one given membership grade 0.5. The expected surface area is also shown:
both regions either contribute as a whole, or don’t contribute at all. As a result,
the only possible surface areas are x and 2x. Figure 1c finally combines both
aspects: the points with membership grade 0.5 each are counted individually,
whereas the set with membership grade 1 is counted as one whole; this is also
reflected in the surface area.

Note that currently, a sub-region is not considered to have 0 as a possible
surface area, resulting in the fact that the total surface area for the region cannot
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be 0 (e.g. for the region on Figure 1b). This choice is open for discussion when
the regions represent imprecision: some argue that there should always be one
valid value, which implies that a region must have some elements and thus that
0 is not a possible surface area; whereas others can argue that an empty region
is still a region. However if the regions are used to represent uncertainty, each
sub-region must also include 0 as a possible surface area. This discussion only
has a minor impact on the definition though.

Ã = Ã1 ∪ Ã2

= {(p, 1)|p ∈ A1}∪
{(p, 0.5)|p ∈ A2}

(a)

B̃ = {(B1, 1), (B2, 0.5)} (b)

C̃ = {(C1, 1)} ∪ C̃2

= C̃1 ∪ {(p, 0.5)|p ∈ C2}
(c)

Fig. 1. Three different examples of fuzzy regions, with their surface areas: (a) the
classical model, where each points is treated independently, (b) the new model, showing
a region consisting of two subregions each counted as a whole, (c) a region where there
is both a subregion where points are treated independently, and a subregion that is
counted as a whole. For each region, a mathematical explanation of its elements, a
graphical illustration, where the shade of grey is representative of the membership
grade, and its surface area are shown.

In the new situation, where fuzzy regions are defined as fuzzy sets over ℘(R2),
the main problem with the original definition (definition 3) is that it makes all
surface areas between every strong and the weak α level possible, which - as
illustrated on fig 1b - may not be the case. As before, the surface area of the
region should be a (fuzzy) number representing the possible surface areas and
their membership grade. Furthermore each subregion is considered either as a
whole, or not at all, so its only possible contribution is its surface area; the
amount it contributes to the fuzzy number is the same is a the degree to which
it belongs to the region.

Consider the example in fig 2a; the surface area is the sum of all the surface
areas that make up the region. As each of these sub-regions are possible, their
surface areas are considered to be (non-normalized) fuzzy numbers, with just
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one possible value which has a membership grade equal to the possibility of the
sub-region in R (fig 2c).

R̃ = {(R1, 0.5), (R2, 1), (R3, 0.5)}

(a) (b)

(c1) (c2) (c3) (d)

Fig. 2. Example to illustrate the definition: (a) definition of the region, (b) graphical
representation, (ci) area of Ri, (d) total surface area of R.

S̃f(R̃) = (S(R1), µR̃(R1))+̃(S(R2), µR̃(R2))+̃(S(R3), µR̃(R3))

To add up all these regions, fuzzy arithmetic is used, which implies considering
the different possible combinations:

– a surface area of x is only possible by considering either region 1, or region
2 or region 3; the membership grade for x therefore is: max(0.5, 1, 0.5) = 1

– a surface area of 2x is possible by considering either region 1 and 2, 1 and 3
or 2 and 3; which yields: max(min(0.5, 1),min(0.5, 0.5),min(1, 0.5)) = 0.5

– a surface area of 3x is only possible by considering all three regions; yielding
for 3x the membership grade: max(min(0.5, 1, 0.5)) = 0.5

The end result is
S̃f (R̃) = {(x, 1), (2x, 0.5), (3x, 0.5}

as also illustrated on fig 2d. In general, for any number of closed sets, the surface
area can be defined as:

S̃f(R̃) =
˜∑

X|µR̃(X)>0

(

S(X), µR̃(X)
)

(7)

Generalizing results in the definition:

Definition 4 (surface area (fuzzy number)).

S̃f (R̃) =
˜∑

X|µR̃(X)>0

(

∫

p(x,y)∈X

d(x, y), µR̃(X)

)

(8)
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In [2], a fuzzy number X is defined as a fuzzy set over R that satisfies the
properties:

– X̃ is normalized, i.e. there is at least one element x for which µX̃(x) = 1

– ∀α ∈]0, 1] : X̃α is a closed interval
– the support X̃0 of X̃ must be bounded

For future computations, it is useful to have a fuzzy number as the result of
a fuzzy surface area: calculations with different surface areas can be performed
using fuzzy arithmetic. The new definition satisfies the first property if the region
has at least one element with membership grade 1; and always satisfies the second
and third properties if the fuzzy region is bound. While these assumptions are
technically not required in the definition of fuzzy regions, they are reasonable
assumptions which most likely will be made anyway.

Distance: α level approach For the distance between fuzzy regions, two
approaches have been considered [7]: one based on α-levels and one based on
topological aspects. In this contribution, only the first approach is considered,
in which the distance to a fuzzy region yields a fuzzy number, that models all
the possible distances between the corresponding α-levels, not dissimilar to the
concept of the surface area as a fuzzy number. To define the distance in the new
concept, consider two fuzzy regions Ã and B̃.

The original definition (definition 4) poses a problem similar to the calcu-
lation of the surface area: fewer distances than before need to be taken into
consideration, as elements can now be sets that contribute only as a whole. In a
similar approach to the surface calculation, the distances between the different
elements (subregions) are first considered, and then combined to form the overall
distance. As the elements of the newly defined fuzzy regions are basically crisp
sets in R

2, there are different options for the distance between any two elements
of both fuzzy regions; here the shortest possible Euclidean distance is chosen.

d(A,B) = min
pA∈A,pB∈B

{d(pA, pB)}

where the distance between points is given by the Euclidean distance:

d(pA, pB) =
√

(xpA
− xpB

)2 + (ypA
− ypB

)2

with pi = (xpi
, ypi

)
The likelihood of each distance is given by the intersection of the membership

grades of both elements considered; we will use the minimum as the intersec-
tion operator. The membership grade associated with d(A,B) therefore is given
by: min(µR̃1

(A), µR̃2
(B)). The fuzzy number representing the distances is then

obtained as the (fuzzy) union of all possible distances between any element of
R̃A and any element of R̃B . This leads us to define the distance between fuzzy
regions as follows:
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Definition 5 (distance).

˜⋃

A|µR̃1
(A)>0,B|µR̃2

(B)>0

{

(d(A,B),min(µR̃1
(A), µR̃2

(B)))
}

In the case where all element of both µR̃1
(A) and µR̃2

(B) are singleton sets,
i.e. A = {pA}, B = {pB}, this definition yields the same result at the previous
one:

˜⋃

A|µR̃1
(A)>0,B|µR̃2

(B)>0

{

(d(A,B),min(µR̃1
(A), µR̃2

(B)))
}

⇔ µd̃(R̃1,R̃2)
(x) = sup{α | α = min(µR̃1

(A), µR̃2
(B)) ∧ d(A,B) = x}

⇔ µd̃(R̃1,R̃2)
(x) = sup{α | α = min(µR̃1

({pA}), µR̃2
({pB})) ∧ d(pA, pB) = x}

⇔ µd̃(R̃1,R̃2)
(x) = sup{α | d(R̃1α, R̃2α) ≤ x ≤ d(R̃1α, R̃2α)}

In the previous definition, the membership was defined on a per-element basis:
for each distance, its membership was the highest value so that the distance
between the weak α-cuts of both regions at this level is less or equal, and the
distance of the strong alpha cuts is greater or equal to it. The membership grade
for each distance in the new definition is defined as the greatest value (due to
the use of max as union operator) of the smallest membership grades of points
in both regions that are this distance apart. This smallest membership grade
is equivalent to the α-level in the previous definition: at a higher α level, the
distance between these two points will no longer be taken into consideration as
one point will not be present in the α-cut. As a result, these two definitions are
equivalent if all elements of the newly defined regions are singleton sets.

4 Conclusion

In this contribution, the concept of fuzzy regions was extended with the ability
to model groups of points belonging to some extent to the fuzzy region. This
enriches the theoretical model of fuzzy regions, but at the same time opens the
door for improvements to the derived practical models (both the bitmap based
an the triangular network model that have been developed before [4],[6]). The
new model can be used to incorporate possible subregions, and by carefully
chosing them also possible boundaries, that need to be considered as a whole.
Along with the changes to the model, some operators (namely surface calculation
and distance) have been considered. The adaptation of the model is such that
regions from the previous model can easily be represented with it; as such it
is a generalization of the previous model (which in turn was a generalization
of the crisp model). The next step is to consider the change that will occur
in topological relations, and to optimize three derived models (contour lines,
bitmaps, triangular networks) to handle the change in the theoretical model in
an efficient manner.
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