
Using open source music software to teach live electronics in pre-college music
education

Hans Roels
University College Ghent - Faculty of Music

Hoogpoort 64
B-9000 Ghent, Belgium
hans.roels@hogent.be

Abstract

A basic course of live electronics is needed in pre-
college music education to teach children how to
perform on a digital musical instrument. This paper
describes the basic components of such a live
electronics course, examines whether open source
music software is suited to realize these
components and finally presents Abunch, a library
in Pure Data created by the author, as a solution for
the potential educational disadvantages of open
source music software.

Keywords

live electronics, music education, Pure Data,
digital musical instruments, open source music
software

1 Introduction
Since more than a decade home computers and

laptops have become powerful enough to process
sound in real time. This in fact transformed
computers into musical instruments. As this
change was taking place, computers became more
widely available in households and schools. Anno
2010 the computer has probably become the most
widespread musical instrument in a large part of
the developed world.

This unique situation urgently prompts us to
rethink and redesign our music education which is
still largely built upon our traditional knowledge
of acoustical instruments and music and to
question why pre-college1 music education in
Europe lacks a course of live electronics2 in which

1The term 'pre-college music education' is used to
denote all kinds of music education for children,
teenagers and grown-ups who haven't taken music
courses on a college, university or professional level

2Live electronics is used in a broad sense to describe
a performance with at least a human performer and an
electronic device producing or processing sound

children, teenagers and amateur musicians can
learn to perform on a digital musical instrument.

This paper describes the basic components of
live electronics courses on a pre-college level,
examines whether open source music software
-and in specific Pure Data- is suited to realize
these components and finally presents Abunch, a
library in Pure Data created by the author, as a
solution for the potential educational
disadvantages of open source music software.

2 Live electronics

2.1 Digital Musical Instruments

It is important to know which fundamental
differences exist between live electronic and
acoustical music before the content and
methodology of a live electronics course can be
discussed.

First, in a digital musical instrument (DMI) the
sound production unit and the user interface can be
seperated and recombined[1]. An acoustical link
between both parts as in an acoustical instrument
is unexisting and unnecessary. The unique
modular nature of a DMI should be central to live
electronics education as it is this particular feature
that distinguishes it from other traditional
instruments.

Secondly, we should ask ourselves what
'performing well' means in a live electronic context
as we wish to learn our children and students to
play this instrument well. Virtuosity in the digital
musical era has an off-stage component which is
almost as important as the on-stage one and which
is not only different but also more diverse and
extensive than in acoustical virtuosity.
Developing, building, modifying or adapting a
digital instrument is highly important to produce a
convincing and expressive performance apart from
the classical training.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55693954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The third difference can be found in the
information stream between composers and
performers. In electronic music the number of
parameters that can be manipulated (before or
during a performance) turn a traditional score into
a restricted medium to communicate a message
between a composer and a performer. Because not
all parameters can be notated (in detail) a
performer often needs to improvise along more
general guidelines. If a performer wants to learn
from a composer or from other performers how to
perform he has to attend a performance, talk
directly to a collegue or composer or consult other
media (recordings, texts, source codes, patches,
websites, mailing lists, videos,...) than a score.
Information has become multimodal in live
electronics.

Live electronic music is clearly different from
acoustical music, the categories of human
activities within music making reflect these
changes. The boundaries between composer,
improviser, performer and instrument-builder have
been blurred and 'performing' has in fact become
quite an inadequate term. In general whenever this
term is used in live electronics, a larger amount of
composition, improvisation and instrument-
building is implied than in acoustical music
because of the reasons mentioned above. Therefor
creativity and autonomy- have become more
outspoken in the live electronic music scene.

2.2 Content

Taking into account the specific character of the
musicianship and the instrument in live
electronics, a basic content of a beginners course
for live electronic music is presented. In short the
following knowledge domains should be part of
this content:

1. Digital Signal Processing techniques
2. Basic audio hardware
3. Mapping techniques
4. History of electronic music
5. Auditory training
6. Sound organisation in real time
7. Performance training

Each of these seven domains is very extensive
and could be the subject of a new course. In a
beginners course of live electronics these subjects
need to be treated only very basically and a
selection within each domain has to be made. The
seperate implementation in music education of six
of these domains is not new and has been
researched and applied in classrooms before[2][3].
Introducing mapping techniques on a pre-college

level is new and necessary because they are
essential to use the full and unique potential of a
DMI (see 2.1). The essential parts of these
mapping consist of:

1. basic math
2. basic boolean operators
3. comparison operators
4. assignment operator
5. relay switch
6. a module or system to order all this logic

and math in time
Because mapping is in fact programming, the

components could be a lot more extensive but this
selection provides a basic set with a lot of
possibilities to connect user interface and DSP in
many different ways.

2.3 Methodology

In a live electronics course the sound experience
and performance should form the basis of the
teaching methodology. Performance requires fast
skills and automatisms of the human body. These
are in fact feedback loops between the sensoritory
information and body gestures. Our brain receives
perceptions from our ears, eyes, hands, etc.,
processes these in a conscious and inconscious
way and creates intentions that are embodied in
body gestures which adapt and change the sound
[4]. This -almost simultaneous- cycle of
perception, cognition, intention and movement is
action-based and all the separate units are related
to the central act of performance. In an action-
based methodology the theoretical knowledge can
be integrated in listening and performance
experiences and foster further progress in sound
imagination, experimentation and performance.
Music theory and technical knowledge thus are a
tool to develop performance -and in general
musical- skills.

The forementioned mapping techniques might
seem to be boring or very theoretical in a music
course, but, if they are integrated in performance
and instrument design tasks, they can be fun. One
can hear whether the result of a mapping logic is
right or wrong and consequently recognize a
problem and try to solve it... (a method that math
or programming teachers would certainly find very
attractive).

The multimodal information, the lack of detailed
scores and the modular nature of a DMI in live
electronics (see 2.1) require a high level of
creative input from the children and a need to rely
on direct aural information (and not on a score).
The teaching methodology in live electronics

should therefore be mainly auditory based and
encourage personal autonomy and creativity. For
example, as there are no fixed and absolute rules
about the right coupling of user interface and DSP,
it is very important that children have sufficient
time and freedom to experiment with those
techniques in order to learn more about the
different factors (available equipment, physical
skills, artistic demands,...) on which this coupling
choice depends. These experiments also help to
hear to what extent the user interface and mapping
define the audio result, even when the same DSP
techniques are used.

To summarize, a live electronics course should
center on the immediate perception and
performance of sound, use background theory and
auditory training to improve and develop this
musical activity, promote the tools to take
advantage of the modular nature of a DMI and
foster the creativity and autonomy of each pupil.
Any software to learn live electronics should fit in
this general framework.

3 Open Source Music Software in live
electronics education

Is open source music software suited to teach
and learn live electronics? In the next section Pure
Data (Pd) is used as an example to answer this
question.

3.1 A continuous learning environment
Anyone who wants to learn to play an

instrument should regularly have access to his
instrument. This is an almost self-evident truth in
instrument training. The simple but very powerful
argument in favor of open source music software
for live electronics education is its accessibility,
low cost and ability to run on several operating
systems. These features enable schools and pupils
to install and use this software at school and at
home. In this way pupils can have regular access
to their digital musical instrument and can start
developing all the subtile automatisms and
gestures that are required to perform music on an
instrument. As in acoustical instrument training,
the main part can be done at home while the class
room only serves to guide this continuous process.
In this way open source music software enforces
the importance of performance in live electronics.

3.2 The combination of user software and
programming language

At the moment there is a wide choice of open
source software for live electronic music (Pure
Data, ChucK, CSound, SuperCollider, etc.). All
these programs are in fact combinations of user
software and audio programming languages and
some pedagogical problems -especially on a pre-
college level- may arise because of this
combination.3

First, a beginner can easily get lost in the
massive and confusing range of possibilities and
lose his motivation to learn more about electronic
music.

Second, if a newbie wants to find information
(articles, websites, mailing lists, books,...) about
open source software for live electronics, it is
often quite technical and requires a lot of inside
knowledge. For a beginner some texts or mailing
lists look like cryptograms. Although a lot of
patches and example files for beginners do exist in
a program like Pure Data, the level is often too
high for pre-college teenagers, especially for the
ones that have no background in electronic music
or software programming.

Third, as I started teaching live electronics with
Pd to teenagers in a music school, I noticed that
there is another disadvantage to this combination:
for a musician who wants to perform or compose it
takes too long before he can be creative with the
instrument design. He has to know too many basic
units and syntax rules before he can produce sound
and start combining them.

Of course the combination of user software and
programming language has a great pedagogical
advantage, especially in a graphical environment
like Pd where there is no compiler and no split
between the source code and the compiled
program. This kind of transparancy helps a tutor to
deal with more theoretical knowledge within a
performance context and corresponds very well to
the action-based methodology of live electronics
courses. At the same time this transparancy also
helps to abstract or transcend the software that is
used in the classroom and to learn more about
electronic music and its performance in general.
By seeing the basic source code and learning more
about fundamental techniques, it becomes easier to

3It is no coincidence that most software packages for
live electronic music are more or less programming
languages. This reflects the fundamental changes in
Digital Musical Instruments and in the performance of
live electronic music described in 2.1

recognize similar procedures in other software for
live electronic music.

Finally as programming languages these
forementioned open source music software
packages have all the basic tools for learning and
applying the mapping techniques. Understanding
and using the modular nature of a DMI becomes
feasible in a live electronics course using this kind
of software.

4 Abunch

4.1 Content

Abunch4 is a collection of 60 high-level objects
(so-called abstractions) in Pd and an additional set
of information files. The aim of the main part of
the abstractions is to perform electronic music
while the remaining abstractions and the info files
demonstrate, analyse or explain techniques and
musical applications in live electronic music.

The abstractions provide a set of ready made
objects to

• record and play sound files (from hard
disk and memory)

• manipulate and process sound (effects)
• generate sounds (synthesizers)
• prepare control data (sequencers with

different graphical interface)
• synchronize control data (clocks)
• analyse sound and control data

(oscilloscope, spectrum analyzer,...)
• record control data to a score
• receive data from common interfaces
• algorithmically generate control data

These Abunch objects use techniques like FM
synthesis, granular synthesis and random walk
algorithms. The majority of the abstractions were
made by the author while approximately one
fourth is based on files by other authors.5 All
Abunch objects share a common architecture and
can easily be connected with each other (and with
native Pd objects) to create all kinds of custom
made live electronics. Thus in the first place this
library is an active toolbox to experience and learn
electronic music.

To start off with performing, Abunch also
contains a lot of information and documented
patches. Every Abunch object has a help file that
explains its workings and that is accessed using

4Abunch is available for download at
www.hansroels.be/abunch.htm and is released under the
Creative Commons GNU General Public Licence.

5Authors such as Miller Puckette, Frank Barknecht
and Tristan Chambers

the normal help procedure in Pd -right-clicking an
object-. Moreover there are more than 40 example
files that not only demonstrate the general
application rules of Abunch objects but also the
internal structure of general audio techniques (FM
synthesizer, loopstation device,...) and general
musical 'recipes'. The latter uses guidelines and
tricks -for the musical application of specific
techniques- that have been developed in the last 60
years by composers and performers in electronic
music of different styles.

Finally a 'Quick Start' tutorial was made about
Abunch and a mapping tutorial. This last tutorial
gives some simple examples on how to connect
user interface and sound production using the
basic operators explained in 2.2.

4.2 Simplified procedures

In the first place the ease of use for beginners
was obtained by providing high-level objects as
building blocks but the installation and working
procedure was also simplified as much as possible.

The installation is straightforward and only
requires 1. the Pd core version (called 'Vanilla')
which implies that no externals need to be
installed and 2. the Abunch folder with files.

If you want to create a new object in Pd, you
have to know the name, use a '~' sign to
discriminate audio from control objects and
provide a set of arguments which refer to specific
parameters and functions of that object. In
Abunch you can start creating new objects by
typing the name (not caring about the '~' in the
name) and an unique number as an argument. Thus
only one type of argument is used (to enable a
general preset system)6.

The different procedures in Abunch (left) and
Pure Data (right). In Abunch the argument (the
number after the object name) refers to the preset
system. In Pure Data there are more options:
'1000' refers to the frequency of the oscillator
'osc~' object and '1' to one audio hardware output
of the digital-to-analog converter (dac~).

6Giving every Abunch object an unique argument
enables to store several instances of the same object in
the presets.

Once a new object is created, one can start
connecting objects. In Pd objects can receive
numbers, audio signals, lists or all kinds of
messages for special functions. In Abunch the
connection types were reduced to numbers (for
control data), audio signals and 2 special
connection types: a 'clock' signal to synchronize
time related objects and a 'record' connection to
combine record and play objects into live
recording units.

Three Abunch objects connected to each other,
the control window of every object can be closed
or opened.

The control window of the 'play-file' object.

4.3 Goal

The main goal of Abunch is to provide a
practical open source software tool that enables
beginners to learn more about the musical
possibilities in real time of a computer. Users can
listen to basic tools and techniques and actively
learn more about these techniques. In this way
Abunch fosters an active teaching and learning
method in which sound is the main focus and
theory can be integrated in the performance.
Pupils can immediately start experimenting with
computer sound by combining these objects and
techniques with each other to create their own
desired sound devices and thus their own set of
knowledge. An experimental attitude and a critical,
personal opinion and methodology is encouraged
by the open-ended architecture of Abunch [5][6].
The analysing objects in the Abunch library enable

the students to test and evaluate the other objects
and their own built patches and thus help them to
take control of their own learning.

4.4 Advanced features and integration within
Pure Data

Abunch was launched in 2008 and tested and
used with a large number of children and students.
As they got acquainted with the library and its way
of working I started noticing that for some of them
Abunch was becoming too easy and restricted and
a mode to combine user friendliness and more
advanced features had to be found. One of the
solutions was to hide the more advanced
procedures and use the 'wireless' sends and
receives in Pd. Almost all graphical user interface
(GUI) objects (faders, knobs, switches,...) within
Abunch objects can be easily controlled by other
objects via the inlets, the usage of the GUI
elements can thus be automatized. For ease the
control values are normalized to a range of 0 to
127. This also facilitates the use of MIDI hardware
to control Abunch objects. The restrictions of this
easy MIDI-like procedure can be superseded by
using the sends and receives system. Every
Abunch object can print out a list of hidden send
and receive names to which values within any
range can be sent. Via this 'hidden' procedure more
parameters can be controlled and adjusted. In a
similar way more advanced features were added
without changing the easy-to-use layout.7

Normal procedure in Abunch: a sequencer
object called 'timeline' controls the 'pan' fader
within the 'panning' object by connecting it to the
right input. This input of the 'panning' object is
normalized to the range 0 - 127 just like the output
from 'timeline'.

7Extra features were also added because Abunch was
used by the author in his PhD-research.

Advanced procedure: the range of the values in
'timeline' can be adjusted in the 'extra_options' of
this object and are sent to the 'send name' 1-
panrpos of the 'pan' fader in the 'panning' object.

In a further stage pupils and students can start

using native Pd objects to add more possibilities to
Abunch. One part of the example files
demonstrates how these native Pd objects can be
combined with Abunch objects. The procedures in
Abunch are made as similar as possible to Pd
procedures to aid the transition from Abunch to
Pd. In general Abunch uses a reduced number of
procedures, thus the main challenge for the
transition is to learn new methods and
possibilities. Two specific changes were added to
Abunch though (and these were mentioned before
in 4.2): the '~' is not used in the name of audio
objects and the argument of an object only refers
to the general preset system.

4.5 Future plans

Abunch is of course a work in progress with
room for improvement, especially because until
today it is a solo project and the pace of
development is mostly dictated by short-term
educational demands.

A frequently heard criticism from pupils is the
simple layout. Another problem is the large
number of files that is needed to use abstractions
and presets within a main file. There is no direct
method to bundle all the files in one folder8 and
only a workaround solution was found. This
problem is pedagogically relevant because pupils
perform and pratice at home and often forget to
copy a number of files when they return to the
classroom.

Future versions of Abunch will hopefully
include the following:

• more example files (about the musical
application of techniques)

• more usage of the data structures in Pd to
create a more attractive and diverse layout

8There is no procedure or object in the core version of
Pd ('Vanilla') to know the current file name, to copy files
and to create a new folder.

• a neat and uniform structure within each
object with information and comment in
the source code

• a style guide for other developers that
want to make new Abunch (or similar)
objects

• an easy-to-use template for composition
and improvisation algorithms

5 Conclusion
The modular nature of a Digital Musical

Instrument and thus mapping techniques are
considered as central parts of any live electronics
course in pre-college education. Open source
music software for live electronic music is well
adapted to teach these mapping techniques and
-because of its low cost and accessibility- ensures
the tutor and student regular access to their
musical instrument which is a prerequisite for any
course of instrument training. Therefor it is
possible to use open source music software like Pd
successfully to teach children to perform live
electronic music.

A solution for the massive amount of
possibilities and the insufficient user friendliness
in an audio programming language like Pd is found
in the development of a library of high level
objects like Abunch. This library is a balanced
mixture of performance and theory-orientated
objects with simplified ready-to-use procedures
and more advanced hidden features.

References
[1]Miranda, Eduardo Reck, and Marcelo M.

Wanderley. New Digital Musical Instruments:
Control And Interaction Beyond the Keyboard.
Pap/Com. A-R Editions, 2006.

[2]Brown, Andrew. Computers in Music
Education: Amplifying Musicality. Routledge,
2007.

[3]Landy, Leigh. The ElectroAcoustic Resource
Site (EARS). Journal of Music, Technology and
Education, no. 1 (November 2007): 69-81.

[4]Leman, Marc. Embodied Music Cognition and
Mediation Technology. 1st ed. MIT Press, 2007.

[5]Holland, Simon. Artificial Intelligence in Music
Education: A Critical Review. In Readings in
Music and Artificial Intelligence, Miranda,
Eduardo Reck, ed. Routledge, 2000. .

[6]Smith, Brian. Artificial Intelligence and Music
Education. In Readings in Music and Artificial

Intelligence, Miranda, Eduardo Reck, ed.
Routledge, 2000.

	1 Introduction
	2 Live electronics
	2.1 Digital Musical Instruments
	2.2 Content
	2.3 Methodology

	3 Open Source Music Software in live electronics education
	3.1 A continuous learning environment
	3.2 The combination of user software and programming language

	4 Abunch
	4.1 Content
	4.2 Simplified procedures
	4.3 Goal
	4.4 Advanced features and integration within Pure Data
	4.5 Future plans

	5 Conclusion

