
FORMAL MANAGEMENT OF OBJECT BEHAVIOR WITH STATE-
CHART DNA

Benjamin De Leeuw∗ and Albert Hoogewijs†

∗ Dept. of Pure Mathematics and Computer Algebra, Universiteit Gent, Galglaan 2 - 9000 Gent,
Belgium
† Dept. of Pure Mathematics and Computer Algebra, Universiteit Gent, Galglaan 2 - 9000 Gent,
Belgium

Abstract: We introduce and explore a new statechart (sc) abstraction method. We define simplified
statecharts (ssc) and discuss the use of action abstraction in ssc models. We isolate sc DNA from
UML sc models, and show how this sc DNA can be used to define behavior model metrics and more
generally, to manage object behavior.

Keywords: State Machine Metrics; Unified Modeling Language; Behavior Modeling and Design;
Mathematical Abstraction of Statecharts.

1. INTRODUCTION

The Unified Modeling Language (UML) is a visual
language to specify all sorts of systems, on an abstract
level [1]. The language offers a number of diagrams to
specify different parts of a (software) system. Each kind
of diagram shows its own viewpoint on this system. This
paper studies one particular viewpoint on object oriented
systems, namely the statechart (sc), which represents
object behavior, similar to automata. We will investigate
the benefits of abstracting the UML action language for
statecharts to a very basic one, consisting only of event
throwing actions, and memory reads and writes. We define
a morphism which transforms standard UML statecharts to
so-called simplified statecharts, statecharts with abstracted
actions (Sect. 3.). We show how this abstraction allows us
to propose a mathematical definition for statecharts, similar
to automata (Sect. 2.), introduce a grammar and language,
called statechart DNA, which summarizes the statechart
construction process (Sect. 4.) and define a formal as
well as practical way of scalable managing object behavior
(Sect. 5.).

2. STATECHART DEFINITION

The UML sc is an evolution of the Harel sc [2], and
has been incorporated in the UML standard since version
1.1. A precise description can be found in the UML 2.0
specification documentation [3]. It is a rich, hybrid model
incorporating a number of influences that cater for different
modeling preferences. A basic sc is a state machine model,
extended with constructs for hierarchical encapsulation
and for the denotation of concurrent computation. The
execution semantics are based on queuing of events [3] and
on the properties of some kind of action language. Fig. 1
displays part of the UML 2.0 metamodel, which defines the

Figure 1: Partial UML 2.0 Metamodel Defining Statecharts

UML sc. Some model elements of UML statecharts, shown
in Fig. 1 are redundant, others are convenient extensions
to the basic state machine model. For an explanation
of the different diagram elements, refer to the UML 2.0
superstructure document [3].
We only retain the most essential constructs from the
UML metamodel in our definition of simplified statecharts
(ssc). In Sect. 3. we will show how UML statecharts
can be converted to simplified statecharts, through action
abstraction. We use mathematical language to describe this
restricted model for statecharts. We therefore assume the
reader has some familiarity with the mathematical theories
of automata (see for example [4]), as our definitions will
make use of notions common in these theories. We
abbreviate n ∈ r, r ∈ R, with R a powerset of any set of
objects n, as n ∈∗ R, if it is clear or doesn’t matter which
r ∈ R we are referring to.
[Simplified Sc] A simplified statechart (ssc) is a tuple

〈Σ, R, δ, δ′, ρ, r0, S, T 〉
Σ is a finite alphabet consisting of two sets of symbols eL
(event locations) and mL (memory locations)

Σ = eL ∪mL
eL ∩mL = {λ}

Copyright c©2004 IEEE: An earlier version of this paper was first published in AFRICON ’04, 15 - 17 September 2004, Gabarone, Botswana

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55693866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


λ is the empty symbol. R is a set of regions. Each region
r ∈ R is a set of atomic objects (states). δ and δ′ are
transition functions, ρ is an encapsulation function. S is
the set of start pseudostates, of any region r ∈ R. T is the
set of final pseudostates, of any region r ∈ R. r0 is one
designated element of R (root region).
Accompanying this definition, there are a number of
properties, which further refine the ssc model. These
properties are usually enforced on the UML sc model
through constraints, formulated in the Object Constraint
Language (OCL). A detailed discussion of the OCL can be
found in [5].
Each set r ∈ R is disjoint from the other sets in R:

∀r ∈ R · r ∩⋃
ri∈R\{r} ri = φ

Each region r ∈ R contains exactly one start pseudostate
(named sr) and one final pseudostate (named tr):

∀r ∈ R · S ∩ r = {sr}
∀r ∈ R · T ∩ r = {tr}

A state cannot be a start pseudostate and a final
pseudostate at the same time:

T ∩ S = φ

We define labels for the transitions, and the signature
of the δ,δ′ and ρ functions. In order to define these as
total functions, we make use of an error state ∗, which is
implicitly present in any ssc. [Label] An element of the set
L is a label.

L = eL×mL× (eL ∪mL)

[Labelled Transition]

δ :
⋃

r∈R δr

δr : r × L → r ∪ {∗} (for any r ∈ R)

δ′ :
⋃

r∈R δ′r
δ′r : r \ {sr} × L → ⋃

ri∈R\{r} ri ∪ {∗} (for any r ∈ R)

ρ :
⋃

r∈R ρr

ρr : r → 2S\{sr} (for any r ∈ R)

Following properties further constrain the definition of
labelled transition. There is exactly one transition from
the start pseudostate sr of every region r ∈ R to some state
n ∈ r:

∀r ∈ R · (∃n ∈ r · ∃a ∈ Σ · δ(sr, (λ, λ, a)) = n)∧
(∀n′ ∈ r · δ(sr, (e, g, b)) = n′ ⇒

n = n′ ∧ e = λ ∧ g = λ ∧ b = a)

There is at least one transition from some state n ∈ r, for
every region r ∈ R, to the final pseudostate tr:

∀r ∈ R · (∃n ∈ r · ∃e, g ∈ Σ · δ(n, (e, g, λ)) = tr)∧
(∀n′ ∈ r · δ(n′, (f, h, a)) = tr ⇒ a = λ)∧
(∀n′ ∈∗ R · δ′(n′, (f, h, a)) = tr ⇒ a = λ)

There exist no transitions from any start pseudostate,
which cross regions:

∀r ∈ R · ∀(e, g, a) ∈ L · δ′(sr, (e, g, a)) = ∗

If for some regions r1, r2 ∈ R, and for some state n ∈∗ R
holds that r1 and r2 are subregions of n, then there can be
no region crossing transitions between the states of regions
r1 and r2:

∀r1, r2 ∈ R · ∀n ∈∗ R · sr1 , sr2 ∈ ρ(n) ⇒
¬(∃n1 ∈ r1, n2 ∈ r2 · δ′(n1, (e, g, a)) = n2∨

δ′(n2, (e, g, a)) = n1)

The start and final pseudostates of every region r ∈ R,
have empty ρ:

∀r ∈ R · ρ(sr) = φ ∧ ρ(tr) = φ

We define the region hierarchy as an ordering relation on
R. The ordering relation <h is such that r <h r′ (r, r′ ∈
R) if and only if

∃n ∈ r · sr′ ∈ ρ(n)

The ordering relation <h of an ssc must be a tree-order
(connected, antireflexive, antisymmetric, transitive and at
most one predecessor or parent for each element), on all
regions in R. The root of this tree is the region r0 and the
children of region r ∈ R are those regions r′ ∈ R for which
r <h r′.
The basic building blocks of ssc models are start (sr) and
termination (tr) pseudostates, simple states (ρ(n) = φ),
compositional states (ρ(n) 6= φ), transitions (δ, δ′) and
regions (r ∈ R), all of which are easily matched to the
UML metamodel of Fig. 1. We encounter event locations,
which match events, and memory locations, matching
guards. Action sequences are replaced by actions on the
transitions themselves, represented by the third component
of transition labels ((e, g, a) ∈ L). Join pseudostates are
shorthands for concurrency with region crossing edges, and
are therefore implicitly present in the definition of the ssc
model. We don’t introduce history pseudostates, because
they can also be considered syntactic sugar. With (global)
memory access available (the set mL consists of memory
locations), this memory can be used to simulate the history
pseudostate.
According to the UML semantics [3], the history
pseudostate stores the current state of affairs, when a region



Figure 2: Conversion of a Region with UML History Pseudostate

is left. Upon reentry of this region, the history state returns
the region to this state. Fig. 2.1 shows an example (UML)
statechart with a history pseudostate. It shows a region
with a loop of transitions. Each time event x is thrown,
the history pseudostate stores the current state the loop
is in. When from state D, event y is thrown, the loop
is reentered at that same state, and continues from there.
Fig. 2.2 displays a translation of this loop, using (global)
memory access. Each time, event x is thrown from some
state pertaining to the loop (A,B,C), a memory write
action stores the state that was left. Before the loop can be
reentered, when event y is thrown, control passes through
the H state, from which three guards check the memory for
the last known state, the loop was in. This behavior matches
the history state semantics.
We conclude this section with the following theorem:

Theorem 1 (Ssc Expressivity 1) Every UML sc model
element of the UML metamodel defining statecharts, is
covered by the ssc model definition, as is every OCL
constraint on the UML metamodel by properties of the ssc
model.
We refer to the UML documentation [3] for a full
description of the different OCL constraints on the UML
metamodel.

3. ACTION ABSTRACTION

The ssc model definition gives access to following actions:

1. event reads, appearing as the first component of
transition labels, (e, g, a) ∈ L, e ∈ eL.

2. event writes, specified as the third component of
transition labels, also referred to as the action of
transition labels, (e, g, a) ∈ L, a ∈ eL.

3. memory reads, defined as the second component of
transition labels, (e, g, a) ∈ L, g ∈ mL.

4. memory writes, shown as the third component of
transition labels, (e, g, a) ∈ L, a ∈ mL.

In Table 1, we divide the different programming constructs
of the Java (action) language into seven classes. All

Table 1: Programming Constructs and their Translation
Construct Examples Translation

memory control

int i
finalize
volatile
extends

abstract/omd

assignment
a = b

System.println() special

control flow
if-else
while

for
implicit

concurrency
Thread t
t.start()
t.stop()

implicit

event reaction

throw
try-catch

itemStateChanged()
gen(new Event e)

implicit

object invocation object.method(arg1,arg2) special

sef operation
a + b
n!

a <= b
special

constructs mentioning “implicit” under the Translation
table header, are already present in the ssc model definition,
and are therefore redundant inclusions in the action
language. Memory control constructs belong to the omd
viewpoint, and are abstracted away in the sc viewpoint. It
remains to show the translation of the classes of constructs,
marked “special” in Tab. 1.
Object method invocations are sequences of (smaller)
instructions, and can be replaced by a sequence of actions
from some of the other six classes of programming
constructs. They would therefore be redundant additions to
the ssc action language. Side-effects-free (sef) operations
also use a sequence of machine instructions to calculate
a value. Since the ssc model definition doesn’t support
sequences of actions on transitions, it remains to show how
these sequences are translated to the ssc model.
In a visual representation of the sc model, transition
labels show the pattern e[g]/a, with (e, g, a) ∈ L [3].
Actions on entry and exit of each state of the UML sc,
are put on all incoming, respectively outgoing transition
labels, of that state. Subsequently applying the conversion
described in the previous paragraphs results in transition
labels with action sequences consisting of assignments and
sef operations. Figure 3 shows how a sequence a; b of
actions is translated to ssc model transitions with single
action component. In the general case, one or more new
states are added in a sequential fashion, and the action
list, is linearly decomposed into single actions between a
sequence of states.
Sef operations compute a new value from available ones. In
the ssc model, we denote the read of the available values,
as guards on transitions, and the store operation of the



Figure 3: Decomposition of Action Lists in a Simplified
Statechart Model

Figure 4: Side-Effects-Free Operations in a Simplified Statechart
Model

new value, as memory write actions, without reference
to any actual value. Figure 4 shows the translation
of a sef operation taken together with an assignment,
e[g]/m = m + l; a. The most recent memory writes [6, 7],
on memory locations m and l, are shown with dotted lines
in Fig. 4. The guard [m] on the second transition of the
right hand side of Fig. 4, fixes the value of memory location
m in the next state. The next transition fixes the value
of l in the same way. Given this fixed value for m and l,
which is depending on the most recent memory writes for
the respective locations, a new value for m is stored on the
last transition with action /m.
In the UML sc model, guards denote conditions on
variables, needed to be true, in order for certain transitions
to fire. The UML sc model allows these guards to be
compound guards using Boolean operators. The latter
are no different from sef operations, and are therefore
abstracted in a similar fashion. Figure 5 shows the
translation of two well known operators. The or connective
is decomposed on two distinct transitions, with same source
and target. If one of the guards is true, the next state will be
reached, and action /a will be executed. The and operator
is translated into a concurrent state with two regions, each
of which checks one of the composite guards. If both
guards are true, the concurrent state will be left, and action
/a executed. Further discussion of the Boolean operators
within guards lies beyond the scope of this paper.
We propose following theorem, the proof of which can be
composed using the information in this section.

Theorem 2 (Ssc Expressivity 2) The ssc model covers the
action semantics of the UML sc action language, except

Figure 5: Decomposition of Boolean Connectives in a Simplified
Statechart

for sef operations and assignment, which are abstracted to
their most basic forms as memory reads and writes.
Theorem 1 and thm. 2 taken together allow us to construct
a translation morphism ϕ between UML sc models and ssc
models, which preserves all information, except for the sef
operations of the action language. A trivial exercise shows
that every UML sc model can be translated to one unique
ssc model, but that one ssc model, may be the translation
of several UML sc models with different sef operations, but
the same memory accesses. ϕ is therefore an epimorphism.
Refer to [8] for more information on category theory.
Let us now extend the definition of the ssc model as
follows: An extended simplified statechart(exssc) is a tuple

〈Σ, R, δ, δ′, ρ, r0, S, T, ι〉
such that 〈Σ, R, δ, δ′, ρ, r0, S, T 〉 is an ssc, and ι is a
function

ι =
⋃

r∈R ιr ∪ ι′r
ιr : r × L× r → λ− calculus expr.× τ
ι′r : r × L×⋃

ri∈R\{r} ri → λ− calculus expr.× τ

τ = {σ | σ : var(λ− calculus expr.) → 2mL}

With λ-calculus expr. we mean a Turing computable
function specification. Many authors in computer science
literature cover λ-calculus as a formal approach to recursive
function specifications [9]. τ is the set of all bindings. A
binding σ lays a connection between the variables in the
λ-expression, and the known memory values at that point
in the execution (a thorough discussion of executions lies
beyond the scope of this paper). A trivial exercise now
shows that with this definition of exssc, we are able to make
ϕ an isomorphism, between UML sc models and exssc
models, such that one exssc model also translates back to
one unique UML sc model.

4. STATECHART DNA

With translation morphism ϕ, defined in Sect. 3., the action
language for sc models can be reduced to its most basic
form, consisting of reads and writes, and the sc model
limited to its most basic constructs. This simplification



makes it easy to compose and manipulate ssc models. We
will postpone the discussion on manipulation to Sect. 5..
In this section we introduce a grammar rewrite system,
inspired by the theory of scenario composition. This
scheme allows us to identify the most important complexity
determining factors of sc models. Each factor is formalized
in this grammar as a composition construct. When
identified, these factors can be measured and put onto a
complexity scale for sc models (see Sect. 5.). The rewrite
system itself will allow us to generate random sc test cases,
usable within sc analysis and development tools.
A detailed description of scenarios lies beyond the
scope of this paper. We therefore refer to [10] for more
information. Scenarios can easily be integrated in the
industrial design of software [11], but in order to gain
the ability to specify executable systems with scenarios,
we have need of a number of typical programming
constructs which go beyond a linear execution of coupled
scenarios. Expert authors in the field have identified how
multiple scenarios can be composed into one executable
behavior [12, 13, 14, 15]. In order to make realistic
behaviors, composed from scenarios, we need a construct
that executes more than one scenario sequentially, one
that allows conditional or disjunctive execution, another
for parallel or conjunctive execution and a construct that
repeats a scenario a number of times [12, 13]. In this
paper, we use the same combination rules as in the work
on scenario composition, but we apply them on atomic ssc
instead of on scenarios. An atomic ssc(assc) represents the
simplest conceivable ssc. An atomic ssc assc(e, g, a) is
an ssc

〈{e, g, a}, {{s, n, t}}, δ, δ′, ρ, {s, n, t}, {s}, {t}〉
with one region, start pseudostate s, normal state n and final
pseudostate t. δ′ and ρ are empty, δ is defined as follows:

δ(s, λ, λ, a) = n
δ(n, e, g, λ) = t

We show that every ssc model is composed of a finite
number of assc. Every ssc model has access to a finite
number of different assc, by the finite alphabet Σ of Def. 2..
One single assc can however be repeated a finite number
of times in an ssc model. We compose assc in an ssc
model, guided by the rewrite system displayed in Tab. 2.
The grammar defines two binary composition operators
+ and ⊕, a lifting operator →, and a wrapping operator
[. . .]assc(e,g,a).
We call the language defined by the production system
of Tab. 2 statechart DNA, because it consists of strings
describing how ssc models are composed of assc. The
different operators of sc DNA are explained as follows:
Composition by + glues two ssc operands M1 and M2

together in one resulting ssc model M1+M2. The terminate
pseudostate of the root region ρ(s0) of M1 is removed from
M1, as is the initial pseudostate of the root region of M2.
Both “loose” transition labels e[g] of M1 and /a of M2 are

Table 2: Rewrite Rules of Ssc Composition (Sc DNA)
Start → R

R → S
R → λ
S → S + S
S → assc(e,m, a) for some (e, m, a) ∈ L
S → S ⊕ 〈d R,Rd 〉d ⊕ S
S → S → 〈i [R]assc(e,m,a) 〉i for some (e,m, a) ∈ L
S → S → 〈c Rc 〉c

Rd → [R]assc(e,m,a) for some (e,m, a) ∈ L
Rd → Rd, Rd

Rc → Rc, Rc

Rc → R

then composed into one label e[g]/a, connecting M1 +M2.
The first operand M1 may therefore only have one edge
to the terminate pseudostate of the root region, otherwise
composition with + is undefined. The rewrite system of
Tab. 2 guarantees that this constraint holds. Composition
by + is associative, if this constraint also holds for the
second operand M2.
Composition by ⊕ glues one or more ssc, to more than one
ssc and results in a composite ssc model M . The basic
operation is analogous to composition by +, but in case
of a lifted operator preceding or following the ⊕ operator,
transitions are redistributed (change source or target states)
over the loop or concurrent subregions that are lifted (see
lifting below). We define this redistribution of transitions
to be non-deterministic. Each sc DNA string therefore
translates to a class of ssc models.
Lifted regions and loops point out where redistribution of
transitions must take place. It also marks the ssc models M
of which loops and encapsulated regions consist.
Wrapping completes missing label parts in the case of
disjunctive and iterative composition by + and ⊕.
Disjunctive composition is delimited by 〈d. . .〉d, iterative
composition by 〈i. . .〉i and conjunctive composition is
marked with 〈c. . .〉c. Sequential composition is implicitly
present in the definition of the + and ⊕ operators.
An example production string of the rewrite system in
Table 2 (assc is omitted for brevity):

(a, b, c) + (d, e, f)
⊕ 〈d λ, [(g, h, i)](f,h,b), [(j, k, l)](t,u,v) 〉d
⊕ (m,n, o) → 〈i [λ](e,m,a) 〉i
⊕ 〈d λ, [λ](x,y,z) 〉d
⊕ (p, q, r) → 〈c (s, t, u) + (v, w, x), (y, z, a′)

+ (b′, c′, d′) + (e′, f ′, g′) 〉c
+ (h′, i′, j′) + (k′, l′,m′) + (n′, o′, p′)

translates to a class of ssc models. One of them is
displayed in Fig. 6. The wrapper operation is displayed
there as underlined transition label parts. Fig. 6 shows one
concurrency site, one iteration, and two disjunctive sites,
matching their counterparts in the example production
string. Reading from the start pseudostate of the root
region, to its final pseudostate, together with the example



Figure 6: Translation of an Example Sc DNA

production string from left to right, we encounter:

1. first disjunctive site, consisting of three ssc models
〈d λ, [r2](f,h,b), [r3](t,u,v) 〉d, the first of which is
empty;

2. iterative site, consisting of an (empty) ssc model, con-
nected through a reflexive transition 〈i [λ](e,m,a) 〉i;

3. second disjunctive site, consisting of two empty ssc
models 〈d λ, [λ](x,y,z) 〉d;

4. conjunctive site, consisting of two ssc models,
〈c r4, r5 〉c, incoming transitions from the second
disjunctive site are redistributed to the two concurrent
regions of the conjunctive site.

Because of the redistribution of incoming edges to the
concurrent regions, shown in the example of Fig. 6, every
sc DNA string represents a class of ssc models, with
as many elements as there are possible redistributions
of edges. In case of the given example, there are
five states, two final pseudostates and one concurrent
state, eligible for redistribution. This means 64 possible
redistributions, hence the class of ssc models translated
from this production string consists of 64 ssc elements.
A relatively complex procedure allows us to construct for
each class of ssc models, the sc DNA. The proof of the
following theorem builds on this procedure. Both will
appear in full detail in [16].

Theorem 3 (Sc DNA Translation) Each element of the Sc
DNA language, translates to a class of ssc models, each of
which is disjoint from the classes translated from other sc
DNA production strings.
This theorem allows us to construct another translation
isomorphism ψ, between sc DNA production strings and
ssc model classes. The complex procedure, mentioned
above, implements the inverse morphism ψ−1. An
ssc complexity class is the ssc model class returned by
isomorphism ψ for some specific sc DNA string.
Following theorem is a consequence of thm. 3. We denote
the set of all ssc models, allowed by Def. 2. as SSC, and
the set of all sc DNA production strings with DNA.
Theorem 4 (Sc DNA Completeness)

ψ(DNA) = SSC
ψ−1(SSC) = DNA

The composed morphism ψ−1 ◦ ϕ, by thm. 1, thm. 2,
thm. 3 and thm. 4, allows us to abstract any UML sc model
to its complexity class, represented by a unique sc DNA
production string.

5. SCALABLE DEVELOPMENT

Further compression of sc DNA on a numeric scale allows
us to define a complexity metric for UML sc models, taking
into account the extensiveness of concurrent, iterative and
disjunctive (conditional) executions, and the label density
of the composing assc. Engineering their development,
different versions of UML sc models can be evaluated by
such a metric.
The rewrite system of Sect. 4. allows (automatic)
generation sc model test cases, in different complexity
classes. These are usable as a general purpose sc repository,
and in gathering empiric evidence for sc model theories.
We use the sc DNA framework, to define “benign” behavior
manipulations, applicable to sc development in CASE tool
environments. Given an sc DNA specification, dna, of
a UML sc, replace all occurrences of assc(. . .), and of
λ, except those occurring in wrapper operations, with
the variable S, and call the resulting string dna′. A
conservative sc modification is defined as any UML sc,
which converts to an sc DNA string, obtained by rewriting
through dna′, in the parse tree for the rewrite system
of Tab. 2. A mutative sc modification is obtained by
a rewriting through any dna′′ that is obtained by a
permutation of two sequences of the form +S . . . S+ in
dna′. More invasive manipulations can also be constrained
by the sc DNA framework. They are to appear in [16]
together with a full explanation of the sc DNA framework.

6. CONCLUSION

Are action semantics a less essential part of UML
statecharts? This paper argues that, if we abstract the
action language to only its side effects (parallel memory
operation), we retain enough information in the form of
ssc models, to confirm this statement. The morphism
ϕ, introduced in Sect. 3., translates UML sc models to
ssc models. These reduce to sc DNA descriptions, by
morphism ψ−1 of Sect. 4.. Sc DNA allows us on the
one hand, to partition ssc models, and therefore also
UML models, into complexity classes, which give us an
indication of how difficult a behavioral model is. On
the other hand, sc DNA strings can be manipulated,
thereby allowing formal behavioral model management and
refactoring.

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide (2nd edition).
Addison-Wesley Professional, 2005.



[2] D. Harel, “Statecharts: A Visual Formalism
for Complex Systems,” Science of Computer
Programming, vol. 8, no. 3, pp. 231–274,
June 1987. [Online]. Available: citeseer.ist.psu.
edu/harel87statecharts.html

[3] OMG, “Unified Modeling Language: Superstructure,
version 2.1.1 (formal/2007-02-03),” February 2007.
[Online]. Available: http://www.omg.org/docs/
formal/07-02-03.pdf

[4] P. Linz, An Introduction to Formal Languages
and Automata (3rd edition). Jones and Bartlett
Publishers, 2001.

[5] J. Warmer and A. Kleppe, The Object Constraint
Language: Getting Your Models Ready for MDA,
Second Edition). Addison-Wesley Professional,
August 2003.

[6] W. Pugh and T. Lindholm, “JSR-133: Java Memory
Model and Thread Specification, final release,”
September 2004. [Online]. Available: http://www.cs.
umd.edu/∼∼pugh/java/memoryModel/jsr133.pdf

[7] G. R. Gao and V. Sarkar, “Location Consistency-A
New Memory Model and Cache Consistency Pro-
tocol,” IEEE Trans. Comput., vol. 49, no. 8, pp.
798–813, 2000.

[8] B. C. Pierce, Basic Category Theory for Computer
Scientists (Foundations of Computing Series). The
MIT Press, 1991.

[9] H. P. Barendregt, Ed., The Lambda Calculus (Studies
in Logic and the Foundations of Mathematics Series).
Elsevier, 2006.

[10] J. M. Carroll, Ed., Scenario-Based Design: Envision-
ing Work and Technology in System Development.
John Wiley and Sons, 1995.

[11] R. Kelapure, M. A. Gonçalves, and E. A. Fox,
“Scenario-Based Generation of Digital Library
Services,” in ECDL, ser. Lecture Notes in Computer
Science, T. Koch and I. Sølvberg, Eds., vol. 2769.
Springer, 2003, pp. 263–275.

[12] J. Whittle and J. Schumann, “Generating Statechart
Designs from Scenarios,” in ICSE ’00: Proceedings
of the 22nd international conference on Software
engineering. New York, USA: ACM Press, 2000,
pp. 314–323.

[13] S. Vasilache and J. Tanaka, “Synthesizing Statecharts
from Multiple Interrelated Scenarios,” Zheng Zhou,
China, 2001. [Online]. Available: citeseer.ist.psu.edu/
vasilache01synthesizing.html

[14] E. Makinen and T. Systa, “An Interactive Approach
for Synthesizing UML Statechart Diagrams from
Sequence Diagrams,” in OOP-SLA2000: Proceedings

of the 10th ACM Conference on Object-Oriented
Programming Systems, Languages and Applications,
2000.

[15] R. L. Hobbs, “Using a Scenario Specification
Language to Add Context to Design Patterns,” in
SEKE ’04: Proceedings of the Sixteenth International
Conference on Software Engineering & Knowledge
Engineering, 2004, pp. 330–335.

[16] B. De Leeuw, “Statechart DNA: Formal and Practical
Investigation in a Statechart Abstraction Method,”
Ph.D. Thesis UGent, December 2007.

citeseer.ist.psu.edu/harel87statecharts.html�
citeseer.ist.psu.edu/harel87statecharts.html�
http://www.omg.org/docs/formal/07-02-03.pdf�
http://www.omg.org/docs/formal/07-02-03.pdf�
http://www.cs.umd.edu/~~pugh/java/memoryModel/jsr133.pdf�
http://www.cs.umd.edu/~~pugh/java/memoryModel/jsr133.pdf�
citeseer.ist.psu.edu/vasilache01synthesizing.html�
citeseer.ist.psu.edu/vasilache01synthesizing.html�

