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Abstract—While the number of cores in both embedded Multi-
Processor Systems-on-Chip and general purpose processors keeps
rising, on-chip communication becomes more and more impor-
tant. In order to write efficient programs for these architectures,
it is therefore necessary to have a good idea of the communication
behavior of an application. We present a communication profiler
that extracts this behavior from compiled sequential C/C++
programs, and constructs a dynamic dataflow graph at the level
of major functional blocks. In contrast to existing methods of
measuring inter-program communication, our tool automatically
generates the program’s dataflow graph and is less demanding
for the developer. It can also be used to view differences between
program phases (such as different video frames), which allows
both input- and phase-specific optimizations to be made. We
also look at how this information can subsequently be used
to guide the effort of parallelizing the application, to co-design
the software, memory hierarchy and communication hardware,
and to provide new sources of communication-related runtime
optimizations.

Index Terms—Profiling, dynamic dataflow graph, network-on-
chip, communication

I. INTRODUCTION

Due to the recent gap between Moore’s law and single-
threaded processor performance, multi- and manycore chips
are becoming the name of the game: IBM’s Cell processor,
Intel’s 80-core Polaris prototype [15] and its Larrabee graphics
processor [12], and many others. These examples have set
the trend for the continuing integration of many threads of
software code onto a single piece of silicon. Also in the
embedded domain, Multi-Processor System-on-Chip (MPSoC)
now represents the idea of integrating not only traditional
instruction set processors, but also hardware accelerators, large
blocks of memory and interfaces to the external world into a
self-contained System-on-a-Chip.

This new level of integration makes it cheaper – and thus
feasible for a much larger number of applications – to have
an ever larger number of processor cores. With it comes the
challenge of designing both the hardware and the software for
these complex systems. In this paper, we will focus on the
interconnection network. This architectural aspect has usually
remained hidden inside large servers or supercomputers – the
only, niche systems featuring multiple processors up until
only a few years ago – but is now prevalent, and must be
accounted for during the design of even what used to be

small, embedded systems. Indeed, Martin [10] agrees that
communication, which is a natural result of multiple entities
(be they processors, hardware accelerators or even memories)
working together on a single problem (or multiple related
problems), entails a major MPSoC design challenge.

The up-and-coming solution for solving on-chip communi-
cation problems is the Network-on-Chip (NoC) [3]. Compared
to the classical solution of dedicated global wiring, a NoC can
be a pre-designed and validated IP core, saving a significant
amount of design time. At runtime, the NoC allows the ex-
pensive long-distance on-chip wiring to be re-used by multiple
(often non-concurrent) communication flows, resulting in the
required performance but with a much more efficient use of
silicon area and power.

Of course, the design of a Network-on-Chip brings with it
a whole new range of parameters, which system designers
must fix in accordance to their specific requirements for
performance given the imposed power and area budgets.
Also, several research questions on NoCs remain [9]. One
of the most important questions here is the mapping of the
communication requirements, i.e. how many bytes of data are
exchanged between all pairs of communication partners, at
each moment in time; onto the available bandwidth of the
network. By extension, the resulting latency and power usage
can be seen as either cost functions or boundary conditions
(or both) of this problem.

To solve the communication problem, a systems designer
will want to do two things. First of all the application, when
its parallel form is being constructed, should be laid out such
that communication between separate network nodes is mini-
mized. Secondly, once the (remaining) communication pattern
is known, all computational nodes must be mapped onto a
topology. Clearly, when heavily communicating entities can
be mapped onto the same network node, this communication
stream will no longer be visible on the network, it will rather
be carried by a much more efficient mechanism such as
through a processor core’s registers or local cache/scratchpad
memory. Between minimizing communication and mapping
lies the concept of shaping communication, for instance in
making it nearest-neighbor only which avoids slow, inefficient
long-distance signalling. Finally, once the previous optimiza-
tions have been done and the application’s (network-visible)
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communication pattern is fixed, all computational nodes must
be mapped onto a topology. Usually a regular structure is
used, mostly a 2-D mesh since, when laid out on a two-
dimensional chip surface, this results in connections of equal
length between each connected node pair.

For regularly structured programs, a lot of this optimization
can be done statically. An important example here is loop
transformation, which can be used to optimize memory usage
or communication [6], [2].

In a large fraction of important existing and emerging
applications, however, this static analysis has proved to be
infeasible. These programs have an irregular structure, have a
behavior that heavily depends on the input or other external
influences, or are even dynamically composed of multiple
smaller application components each sharing the same chip.
Especially inter-processor communication turns out to be very
dependent on these influences. This makes that static optimiza-
tion – although still useful – can never give the fullest possible
benefit. In these cases, dynamic methods of characterization
and optimization should be used. However, an approach must
still be largely automatic to give the additional benefit that both
characterization and optimization can be tailored to a specific
(class of) input set, a combination of program components, or
even to a specific program phase.

Our profiler, PinComm, allows such an automatic mea-
surement of a program’s communication patterns. Since it
is a runtime profiler, it can be connected to any program
(running on a host PC), with any combination of inputs and
parameters. It allows a designer to visualize communication
inside both sequential and parallel programs. This valuable
information can subsequently be used in parallelizing the
program (while minimizing communication between threads),
in mapping the application’s parallel components (optimally
matching communication patterns and network topology), or it
can be used as input to runtime schedulers in a scenario-based
approach such as TCM (see Section IV-D) to make mapping
and scheduling decisions in a communication-aware way.

II. PINCOMM: A COMMUNICATION PROFILER TOOL

A. Constructing the dynamic dataflow graph

Our profiler, PinComm, constructs a dynamic dataflow
graph (DDFG), this is the communication that flows between
parts of the program. These parts can be static functions,
dynamic function calls, threads (for parallel programs), or
specific data structures; each will be represented by a node
in the DDFG.

PinComm is based on Pin, which is a dynamic instrumen-
tation tool [8]. Pin can run any executable program on a
Linux/x86 system, independent of the programming language
used, and allows modular instrumentation of this program
through the use of plugins. Our profiler is such a Pin plugin,
which instructs it to intercept all memory accesses and all
function calls. Each time one of these instructions is executed,
Pin calls back into our profiler. For function calls and returns,
we keep the call stack and output a call trace, which will later
be processed into a call tree. An identifier of the currently
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Fig. 1. Call tree for a hypothetical program, as measured by our commu-
nication profiler. The main function calls three functions, a, c and d, while
a calls function b for some of its functionality. Time (in instruction counts)
goes from left to right, node widths are scaled proportional to each function’s
runtime.
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Fig. 2. Communication graph for the hypothetical program from Figure 1,
as measured by our communication profiler. Each arrow shows the (inherent)
communication between two functions.

executing function is also kept (one for each thread in par-
allel applications). When memory writes are intercepted, the
function ID of the current function (and the thread number,
if applicable) is stored in a last-written-by table together with
the memory address that the write instruction referenced. Now,
when a read instruction is encountered, we can look up the
address in the last-written-by table and determine the producer
of this piece of data. We now know that communication
has occurred between two functions, the consumer being the
current function and the producer being the function found
in the last-written-by table. The size of the communication
stream is given by the size of the memory read instruction
(usually four bytes for the 32-bit x86 architecture).

Our profiler can thus measure two important program rep-
resentations: a dynamic call tree (one for each thread), and
a communication graph that shows communication streams
between all dynamic function calls. An example of the call
tree can be seen in Figure 1. Execution time (in instrucion
counts) has been visualized by positioning and sizing each
function call’s node at a horizontal position relative to its
starting time and execution time, respectively. Figure 2 shows
the corresponding communication graph.

These graphs can be generated completely automatic us-
ing our profiler. Function names are extracted from linker
information in the executable. When the executable contains
debug information, we can also find the source file and line
number for each function. For complex programs, however,
there are usually too many functions, which clutters the
graph and makes a visual analysis impossible. Also, C++
decorates function names which can make the function labels
unrecognizable. To this end, markers can be inserted in the



source.1 These are recognized by the profiler and can signify
the start and end points of code regions. Each of these regions
can be named and will appear on the graph as a single
node. This way, programmers can split up their programs in
functional blocks and use the PinComm profiling tool to view
communication between these blocks, rather than between
individual functions.

Another way to split up the program, other than by function
or by marked region, is by thread. This is interesting for
programs that are already parallelized. The communication
graph will now show communication between threads. When
clustering the communication graph according to the processor
each thread will run on, the (inherent) communication that
can be expected on the on-chip network can be derived. This
is done in an architecture-independent way (i.e., assuming
perfect caching). Simulation of a realistic cache subsystem
could be added to the profiler (since it intercepts all memory
accesses, all information for a cache simulation is available),
although existing tools for this also exist (e.g. CPM$im [7],
which is also based on Pin).

Finally, markers can also be used to start and stop the
measurement halfway the application. This way, one can select
a part of the application to be measured, rather than the
complete program which may include uninteresting parts such
as initialization. Also, for a streaming application, frame or
iteration boundaries can be marked, allowing intra- and inter-
frame communication to be visualized separately. An example
of this will be given in Section III-E.

B. Communication through memory regions

As a first order approximation, the dynamic dataflow graph,
when clustering all nodes according to which processor they
will run on, gives the communication that will be visible on
the on-chip network. This assumes that all memory accesses
internal to a processor (so between functions that were mapped
to the same processor, or memory writes that are only read by
the same function) can always be handled inside the network
node this processor is located on. So in effect we assume the
processor has a perfect cache, or a scratchpad memory large
enough to hold all the thread’s private and shared-owned data.

For small communication flows, this approximation is usu-
ally enough for our applications. Large data structures, how-
ever, are often allocated in shared memory blocks which have
their own network node, or in off-chip memory (in this case,
network traffic flows to/from the network node containing the
interface to off-chip memory). To this end, we added the option
of marking specific data types or malloc() calls with an
object type identifier. For each of these object types, a separate
node in the DDFG will be added. Edges to and from this node
now represent writes to and reads from objects of this type –
or traffic to and from a specific memory. This allows one to
estimate the resulting network traffic to this node, and also
get a quantitative measure of its required memory bandwidth

1These are a specific type of NOP instruction, xchg bx, bx, they
therefore do not interfere with native execution of the same program binary.

– from which the type of memory, banking/interleaving etc.
can be decided.

III. CASE STUDY: 3D WAVELET DECODER

A. Application

3D content made available on the internet, such as
X3D/VRML and MPEG-4 content, is transported over and
consumed on a lot of different networks (wireless and wired)
and terminals (mobile phones, PDA’s, PCs, etc.). The differ-
ence in the bandwidth of the networks and the performance
of the terminals makes it hard for the content provider to
choose the right quality, triangle budget and complexity for
the content. Moreover, the actual content is rendered heavily
according to highly dynamic viewing conditions and hence
these rendering decisions are moved to the terminal side.
Therefore, multi-resolution frameworks are needed, where the
object’s quality dynamically adapts to the viewing conditions
while respecting constraints such as available hardware plat-
form resources and Quality-of-Experience (QoE).

Our demonstration application is a Wavelet Subdivision of
Surfaces (WSS) algorithm, described in detail in [13]. By
progressively decoding higher wavelet frequencies, an adaptive
quality level can be obtained, depending on the complexity
of the input and on external requirements. Such frameworks
can broadly be classified under two categories: one maxi-
mizes quality under frame rate constraints (suitable for power-
plugged systems) while the other minimizes resource/energy
consumption under QoE constraints (suitable for portable
embedded systems). Our main focus is on the latter, where
the best triangle budget and the related Level-of-Detail (LoD)
settings for each visible object are decided according to the
user requested scene level quality. The LoD settings here
indicate not only the discrete LoD parameter but also some
decoder specific parameters. In the case of WSS these are
continuous LoD parameters.

Clearly, this application is highly adaptive in its resource
requirements, but through the input set (the complexity of the
rendered scene), input events by the user (setting a camera
viewpoint or interacting with the scene, which hides/unhides
objects and changes their relative distance to the camera, and
thus their required LoD), and environmental influences on
the target platform (concurrently running processes, which
might be implementing game logic, AI or communication
capabilities, and battery or thermal constraints).

B. Input to 3D-WSS and scenarios

The objective of these experiments is to show how the
information from the application can be used for resource man-
agement. We consider as input for the 3D-WSS application a
gaming environment with three rooms, with a number of ob-
jects (13, 17 or 22) and four different camera positions in each
room. For each of the 12 scenarios, resulting from the room
the person enters and the camera position, the communication
flow incurred by the wavelet decoding will be measured. The
3D-WSS application is yet to be parallelized. We will operate
under the assumption that the major functional blocks will be
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Fig. 3. Partial call tree for WSS with function names (parsed automatically from the debug information) and run lengths (in instruction counts) as made by
PinComm (frame #2)

distributed over different processors in a pipelined fashion, and
will therefore measure communication between each of these
functional blocks.

C. Functional decomposition

Although the call graph generated by PinComm, which
includes the runtime of each function, could be used to
make a decomposition into the target application’s most time-
consuming functional blocks, for WSS we already have such
a decomposition [13].

First, we ran our profiler on the WSS decoder, without
imposing the task graph of WSS that was provided by its
developers. This way, the most time-consuming functions
should again become visible. We also placed markers at
the start of each new frame. The result, when selecting
only the second frame, is shown in Figure 3. Each function
call is represented by a rectangle on a vertical position
corresponding to its stack depth. The horizontal position of
each rectangle is determined by the time the function starts
and ends, measured in instruction counts. The graph shows
that the Render function first calls checkVisibility
which returns very quickly, next Render does computation
on its own (possibly calling shorter functions, function calls
shorter than 10,000 instructions were filtered out), subse-
quently the functions globalParetoBasedParetoSet,
prepareRender and doGLRender are called.

From this call graph one could analyze the application’s
major building blocks, and arrive at the same functional
partitions as those given to us by the application’s developers
(one region, WssDecode, is not visible in Figure 3, which
shows the second frame, because WssDecode only takes a
significant amount of processing time during computation of
the first frame). This shows that our profiler can help in iden-
tifying the high-level functional blocks of new applications,
for which a functional partitioning is not yet known.

Next, we marked the major code regions in the WSS source
code and ran the profiler tool again, this time measuring the
communication between the regions. This manual marking
was done to combine all sub-functions of the major regions
of interest of the application, and to clean the graph from
uninteresting parts of the program and from cryptic, C++-
decorated function names. The result is shown in Figure 4,
for both the first and second frame. Again, the region’s width
and horizontal position denote their starting point and length,
measured in running instruction counts. Each arrow denotes

a major communication stream (containing at least 1% of
the total inter-region communication for the frame) of data
produced by the origin region (in this frame or a previous
frame), and consumed by the target region (in this frame).
In the first frame (Figure 4, top), a first major stream totaling
around 275 kB is from main – this region contains all code not
explicitly assigned to other regions and includes the function
where object data is read from file – to WssDecode which
reads the object data from memory, performs the Wavelet
decoding, and writes decoded vertex data back to memory.
In the second communication stream, totaling over 2 MB of
data, these decoded vertices (which are clearly much bigger
than the original data fed into WssDecode) are used by the
Prepare code region.

Figure 4 (bottom) shows the results for the second frame.
In this frame (and subsequent ones) most of the objects have
been decoded by WssDecode and the results are cached. The
computation time of WssDecode is therefore significantly
reduced compared to the first frame. Note that Figure 4 shows
relative durations, the absolute instruction count drops from
8.3M instructions for the first frame to only 180k for the sec-
ond one. Several other, lower-intensity communication streams
now become visible. Also note that the communication from
WssDecode to BuildPareto, in Figure 4 (bottom), crosses
frame boundaries – obviously BuildPareto in frame two
cannot read from frame two’s WssDecode region since it is
executed at a later stage in the render pipeline. Likewise, the
arrow from Render to itself denotes data generated by the
Render region of the first frame, which is subsequently used
by the Render region of the next frame.

D. Communication patterns

We can now, for the major communication streams in WSS
(those visible in Figure 4), determine their behavior in different
iterations of the program. We already noticed from Figure 4
that both the per-region runtimes and the communication
magnitudes are very different in the first frame than they are
in subsequent frames. The main difference is the length of the
WssDecode function. In the first frame, all visible objects
have to be decoded, which takes a significant amount of time
(up to several seconds). These decoded objects are stored in
local memory; in subsequent frames only newly-visible objects
have to be decoded.

Figure 5 shows the runtimes (in instruction counts) for all
functional regions. Four input scenarios are shown, in each the
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Fig. 4. Communication graph after manual marking of the ma-
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Prepare[Render] and Render. Region lengths (as node widths, pro-
portional to the region’s dynamic instruction count) and large inter-region
communication flows (marked on each edge, in bytes) are shown, for frames
#1 (top) and #2 (bottom).
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Fig. 5. Runtimes for the functional regions of the WSS application, for all
18 frames of the four input scenarios with a 13-object scene

same scene is rendered but from a different camera viewpoint
(C1. . . C4). In every run, 18 frames are computed while the
scene is animated in the same way. The differences in runtime
for the WssDecode region are immediately apparent: in the
first frame it is very long, from the second frame onwards
very few additional objects need to be decoded so the runtime
falls back significantly. One exception is the 17th frame of C4:
here a new object comes into view which needs to be decoded,
yielding a longer execution time for WssDecode in this case.
Note that the four scenarios (camera positions C1. . . C4) are
run separately, objects decoded in the first frame of C1 thus
need to be recomputed for scenario C2.

E. Inter-regional communication

Figure 6 shows the magnitudes for each of the major inter-
regional communication flows, and its evolution throughout
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Fig. 6. Inter-regional communication magnitudes, for all camera positions,
all frames and a 13-object scene

the program. The points marked with a > b show, for a
given frame, the size of information (in bytes) that is produced
by region a in a previous (or this) frame and consumed by
region b in the current frame. This was done for a 13-object
scene, all frames and the two out of four possible camera
viewpoints (C1 and C2). Using the profiler’s output data, one
can construct similar graphs for visualizing the output of data
(produced by the current frame and used in a subsequent
one), or for intra-frame communication, all of which can
guide optimization in different phases of the mapping of the
application’s computational pipeline.

By far the largest inter-regional communication stream, for
all frames and all camera positions, runs from WssDecode
into Prepare. The graph shows that the WssDecode func-
tion in the first frame for each camera position generates the
bulk of the data (the decoded object data) to be used during the
rest of the program. Subsequent executions of WssDecode
decode some additional objects, but most of these are only
used in the current frame: the magnitude of communication
to this and future frames is about as high as the intra-frame
communication for this function pair, which is visible on the
bottom graph. In the middle graph we see that Prepare
consumes a relatively constant amount of data, per frame, from
a WssDecode call in an earlier frame (presumably the first).
Also, the bottom graph shows that although WssDecode
after the first frame generates little data that is to be used
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Fig. 7. Communication using shared memory and CTriangle classes, in
addition to the known streams from Figure 4, for C2, 13 objects, frame #1.

in subsequent frames, it keeps generating (a lower amount of)
data that is used in the same frame.

Since this single communication stream by far outweighs
all other inter-regional streams, we can conclude that, when
optimizing the on-chip communication behavior of the WSS
application, the placement of the WssDecode and Prepare
functionality will be the most important parameters. Clearly,
both should – if it were at all possible from a computational
load point of view – be placed on the same processor. Yet, both
are also the longest executing functional regions. Therefore,
separate cores will almost certainly be used to implement both
functions, which makes on-chip communication unavoidable.
The architecture should thus be dimensioned in such a way
that it can accommodate the WssDecode-to-Prepare com-
munication stream.

F. Communication through shared memory

For Figure 7 we marked the CTriangle class for inclusion
as a node in the graph. The figure shows, for the first
frame camera position C2 and a 13-object scene, the major
communication flow (in kB) between all participating nodes
(the code regions without large communication streams have
been removed from this graph for clarity). In addition to the
streams known from Figures 4 and onwards, we now see
that WssDecode stores a significant amount of local data
in CTriangle objects (them amount to around 32 MB in
total). These objects will therefore most likely be stored in an
off-chip memory. The magnitude of the extra communication
stream over the on-chip network this would incur is again
provided by our profiler’s results, and can be read from
Figure 7.

IV. APPLICATIONS

The data gathered by PinComm can be used in mainly
two ways: (i) when partitioning the application into threads,
and (ii) when mapping the threads onto processors. Although
both can be done both on- and offline, usually partitioning
will mostly be done at design time (although implementations
with a variable number of threads move some of the decisions
to the runtime scheduler), while mapping and scheduling are
more often done at runtime to provide adaptation to different
hardware platforms, changing workloads, etc.

A. Communication-aware parallelization

The communication graph can be used to aid in (manual)
parallelization of an application. The runtime length annotated

call tree clearly shows which functions require the most
execution time, and are therefore candidates for paralleliza-
tion – either by assigning (groups of) functions to separate
processors in a functional parallelization (such as pipelining),
or by parallelizing inner loops in one or more of the longer
functions.

The added value of our profiler comes at the point when, in
this otherwise standard way of parallelization, there is a choice
in how functions are clustered onto processors. Traditionally,
the only metric here is to keep the workload of all processors
the same, so that load imbalance and its associated synchro-
nization cost is minimized. But this clustering problem usually
has several solutions with similar cost. Using communication
between functions, as is visible in our communication graph,
a more general cost function can be constructed that also
accounts for the estimated delay caused by interprocessor com-
munication. By finding a clustering solution with minimal cost,
on-chip network bandwidth and its associated power usage
can be minimized, while performance is increased through the
avoidance of communication latency. Using this more detailed
cost metric, one can often find that solutions that looked
similar from a purely load-balance point of view will perform
very differently due to their differing communication loads,
and in some cases even that the introduction of a significant
load-ibalance can even further improve performance.

This technique can be visualized on the communication
graph (see Figure 8): communication arrows cut by the par-
titioning (solid lines) cause inter-processor network traffic,
communication denoted by arrows internal to a cluster (dashed
lines) can be handled by processor-local caching.

Let’s look again at Figure 2 for instance. Assume we want
to pipeline the execution of the computationally intensive
functions a and d on a two-processor architecture. Function
a is slightly shorter than function d, to minimize the load
imbalance between both processors it would be better to assign
function c to the processor running a. This clustering of
functions onto processors can be drawn on the communication
graph (Figure 8, top). Each communication arrow that is cut by
a cluster’s boundary (solid arrows) will result in interprocessor
communication at runtime. Arrows internal to a cluster (dashed
arrows) result in intraprocessor communication, which – when
this data can be allocated to a memory local to this processor,
or remain in its cache – will not require use of the on-chip
network.

We now see that functions c and d share a lot of data. It
could therefore be more beneficial to tolerate some load imbal-
ance by running c on the d-processor, a cost that can easily
be won back through the reduction in communication cost
(Figure 8, bottom). Of course, the final solution will depend
on the relative costs of load imbalance and communication,
which are implementation-specific.

Finally, note that our profiler does not necessarily see all
data dependences. Smaller communication streams are re-
moved from the communication graph for clarity but they can
still result in data or control dependences which may prohibit
parallelization. Moreover, since the graph is constructed based
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on profiling information, it only contains the communication
present during the execution of the input set(s) used. No
guarantees can be made for other inputs, which may induce
new communication streams and thus more dependences. The
programmer performing parallelization should therefore still
prove that all dependences are honored.

B. Optimizing communication behavior

By carefully planning the WssDecode-to-Prepare com-
munication stream, making use of knowledge provided by
Figure 6 and some basic knowledge about the working of
the application, we can further minimize on-chip communi-
cation. We noticed that there is a large production of data

by WssDecode in the first frame, which is subsequently
consumed by several iterations of Prepare. One can now
distinguish between two cases, depending on which part of
data that is used by the different Prepare calls. If all
of them used (mostly) the same data, then it would make
sense to transmit all data, immediately after production by
the processor or accelerator running WssDecode, to memory
on or near the Prepare core. This way the communication
cost is paid only once (and in advance), and Prepare will
spend little time waiting for data. The other case is when the
Prepare calls in subsequent frames do not use the same
data. This is (to an extent) the case in the WSS application,
as can be seen on Figure 6: WssDecode generates between
1 MB and 10 MB of data, but (much) less than 1 MB is used
by each Prepare iteration. Based on this observation, one
could propose an architecture in which the data is transferred
on demand. This way, communication would be spread out
through time, and the maximum load for witch the network-
on-chip would have to be designed is significantly lowered.
The memory requirements for this implementation would be
higher, though: since part of the data is re-used by different
Prepare iterations one would probably provide a local
copy near the processor running Prepare, containing part
of the information contained in the larger memory near the
WssDecode core. The first scheme needs less memory at the
WssDecode core, the data can be streamed directly to the
Prepare core.

C. Communication through shared-memory

As visible in Figure 7, WssDecode keeps a large amount
of local data, in the form of CTriangle objects, in off-
chip memory. PinComm can provide the total size and access
counts, this can help a designer to implement the memory,
its interface, and the paths to it through the on-chip network,
accordingly.

D. Making TCM communication-aware

Task Concurrency Management (TCM) is a methodology
for runtime management of embedded resources [14]. This
methodology uses scenarios, which are clusters of (input set,
program phase) combinations that have a similar behavior on
the target architecture. For each scenario, an optimal thread
scheduling is found at design time, while at runtime the
specific schedule for the current scenario is used at each time.
This way, a large effort can be made at design time to reduce
resource and energy requirements, while being adaptive to the
specific runtime circumstances but with a very low runtime
overhead.

In TCM, program variations can be defined that relate
to scheduling (in time) and mapping (in space) of program
threads. Mapping can also mean choosing a specific target
processor, when multiple types are available in the system.
This way the methodology can run a given thread on a DSP
or FPGA core when high-performance operation is needed,
for instance while decoding a dynamic video fragment, and
later reschedule this thread to a general purpose processor



during a more static scene. External events such as lowering
the resolution or the system’s battery being drained can also
be taken into account. In addition, when processors have
configurable options such as core voltage, operating frequency
or powering on/off parts of the cache, these settings are also
part of the scenario. The main advantage of TCM, compared
to other techniques, is that it is very automatic: based on
profiling data, clusters of similar program phases are identified
as scenarios, optimal schedules for all scenarios are computed,
and a runtime manager is generated that detects the current
scenario and activates the appropriate schedule.

Clearly, when a methodology such as TCM is applied
to ever larger multi-core architectures, knowledge of on-
chip communication is needed to provide additional opti-
mizations. In a first phase TCM’s scheduling and map-
ping can be optimized to minimize communication flows,
through a communication-aware mapping which places highly-
communicating threads on the same processor, or on a pair of
processors with a fast on-chip network connection between
them. A second phase can consist of the configuration of
the network: just like the processors’ voltages, frequencies
and cache size are set dynamically depending on the sce-
nario, an on-chip network can be configured for optimal
(best performance, lowest power, etc.) support of the expected
communication flow. This configuration can take the form of
setting buffer sizes, changing clock speeds or bit widths of
network links, making changes to the routing protocol, etc.
Details on the required adaptations to TCM, its optimization
algorithms, and results using our profiler data can be found in
[1].

E. Scenario-based runtime management

In a scenario-based methodology, control variables may be
used to detect the current scenario. These are application-
level variables such as loop counters or state variables, or
properties of the input stream, that have shown to exhibit a
predictable relationship to the behavior application [5]. This
way, the application’s properties can be predicted some way
in the future, and the system configured accordingly.

In Figure 10, we performed a principal component analysis
(PCA) on the relation between the available control vari-
ables and the major communication stream (WssDecode to
Prepare). The main contributors to the principal component
are the control variables that denote the number of visible
triangles (with a normalized weight of 26%), the scaling
factor (25%), the total visible area (20%) and the number of
objects (11%). Although there is no obvious direct relationship
between the principal component and the magnitude of the
network traffic for all data points, the maximum flow does
have a clear, almost linear dependence on the control variables.
It is therefore possible to make a good estimate of the
maximum expected communication during the next frame,
only dependent on variables known at the start of the frame.
Since the difference in expected communication can be rather
large (more than a factor of five), some good energy savings
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Fig. 10. WssDecode-to-Prepare communication stream as a function of
the optimal combination of control variables

should be possible when this information can be used to set
up the communication network accordingly.

V. RELATED APPROACHES

A. Static analysis

As mentioned in Section I, several tools and methodologies
exist that can statically predict communication in regularly
structured programs. Usually, some form of polyhedral model
is imposed, in this case all dependencies – and all commu-
nication – can be computed analytically. Several important
applications do fall into this class of programs, or at least
their most important kernels can be described in this way.
Still, other often-used constructs including pointers, such as
linked lists, cannot be described in this way [4].

B. Architectural simulation

A common way to extract communication behavior of a
program is through simulation on a parallel architecture, and
instrumenting the network simulation component to log all
network packets. This can be done using a (full-system)
simulator, or through the shortcut of running an instrumented
binary natively and sending all memory accesses through a
simulated cache hierarchy. This latter technique is followed
in CMP$im [7], which is, just like PinComm, based on the
Pin instrumentation tool. This approach has two conceptual
drawbacks compared to a DDFG profiler. First, it requires a
parallel program, and can therefore never help in constructing
an optimized parallelization, only in validating it. Secondly,
it is architecture dependent, since the cache hierarchy and
coherence protocol have a major influence on the observed
communication. Finally, especially the simulation approach is
much more computationally intensive, restricting its use to
much smaller data sets.

C. Redux

Redux [11] is also a DDFG profiler, based on the ValGrind
instrumentation tool. It builds a very detailed dataflow graph
which shows all dependencies down to register level. This
results in an exploding complexity of the DDFGs for even the
simplest programs, and restricts its use to very small programs,
or small parts of larger programs. In contrast, our approach
sacrifices some detail for a much higher speed, which allows



us to include the whole program with a realistic input set
size. To this end, we only accounted for dependencies that go
through memory and group them on a function call level (or
even higher in postprocessing).

VI. CONCLUSIONS

On-chip communication is becoming more and more im-
portant in MPSoC settings. To visualize communication inside
programs, even before they are parallelized and mapped onto a
specific multiprocessor architecture, we developed PinComm.
This is a communication profiler which measures dynamic
dataflow graphs (DDFGs) for C and C++ programs, and
can present the results in a way that is meaningful for the
developer: communication can be viewed between major code
regions, through banks of shared memory, and between threads
which allows validation of a proposed parallel implementation.
Using this new source of knowledge, new applications become
possible, such as communication-aware parallelization, map-
ping, and configuration of on-chip network resources.
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