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Abstract
Stepping motor operation is characterized by torque ripples. In this paper it is shown these torque ripples
are caused by both the stepping motor drive algorithms and the toothed construction of rotor and stator
of the studied hybrid stepping motors. These torque ripples are analyzed, discussed and measured. The
torque ripples are measured in the complete operating range of the motor and depicted in this paper for
full- half- and micro-stepping. By doing this, the paper provides insight in the vibrating behavior of a
stepping motor driven system and possible solutions to overcome this are placed in the right perspective.

Introduction
The two-phase hybrid stepping motor principle is illustrated in Fig. 1 [1]. The stator is equipped with
concentrated windings while the multi toothed rotor is magnetized by means of permanent-magnets. The
rotor teeth are attracted by the excited stator phase. When a new full-step command pulse is given,
the excitation of one phase is released while a second phase is excited. For half- and micro-stepping
algorithms, two phases are excited simultaneously in order to increase the number of rotor-position steps
in a single revolution.
By counting the step command pulses, open-loop positioning is achieved. The absence of an expensive
position sensor, makes these motors very appealing for industrial and domestic applications. Unfortu-
nately, these widely used open-loop drive algorithms result in large torque ripples and possible resonance
problems limiting the range of operation [2]. Some drive algorithms described in literature minimize
these vibrations but do require some kind of position feedback [3]. As a result, the large majority of the
stepping motors in industry are still driven in open-loop using a full-, half- or micro-stepping algorithm.
In this paper, the origin of the torque ripples and according torsional vibrations are discussed. In section
an expression describing the generated motor torque is theoretically derived. This expression is used

both to gain insight and to model the stepping motor behavior. Simulations based on this model are used
to study the impact of both the drive algorithm in section and the stepping motor construction in section
. Finally measurement results quantifying these vibrations in the complete operating range of the motor
for full-, half- and micro-stepping are discussed in section . Altogether these results provide insight on
the vibrating stepping motor behaviour and places these phenomena in the right perspective.
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Figure 1: Basic hybrid stepping motor principle
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Figure 2: Current and flux vectors
in the dq-reference frame fixed to
the rotor flux Ψr
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Figure 3: Measured torque load angle relation
for 60% and 100% nominal current Imax

Stepping Motor Torque Generation
The electromagnetic torque can be quantified by a vector based on the interaction between the stator flux
linkage space vector Ψs and the stator current space vector is [4].

Tmotor = Ψs × is (1)

By neglecting saturation, the stator flux linkage space vector Ψs can be written as the sum of the stator
flux linkages, established by the two stator currents and the permanent-magnet rotor flux Ψr. In the
dq-reference frame fixed to the rotor flux, illustrated in Fig. 2, the electromagnetic torque can be written
as:

Tmotor = (Ψr + id .Ld + iq.Lq)× is (2)

The electromagnetic torque value can be written as a function of is and the load angle δ, defined as the
angle between is and the rotor flux Ψr:

Tmotor = ψr.is.sin(δ)+
Ld −Lq

2
.i2s .sin(2δ) (3)

The first term in (3) describes the torque generated by the interaction between the permanent-magnet
rotor flux Ψr and the stator current is. This term depends on the sine of the load angle δ. Because of the
multi toothed rotor and stator construction of a hybrid stepping-motor, the reluctance effect will increase
the maximal electromagnetic torque. This reluctance effect is represented by the second term in (3) and
varies sinusoidally with twice the load angle δ. To quantify both effects, the motor torque is measured,
using the test rig depicted in Fig. 16, at different positions while the rotor is blocked. The load angleδ is
modified by changing the phase current set-points i∗a and i∗b. For a current amplitude of 60% and 100%
of the nominal current, measurement results are given in Fig. 3.

Stepping Motor Drive Algorithms
The construction of a stepping motor is ideally suited for open- loop positioning. When constant phase
currents are applied, the rotor moves from one discrete steady-state position to another. By counting the
step command pulses, open-loop positioning is achieved. A simulation is set-up to identify the impact
of the stepping motor drive algorithm on the torque behavior. In the simulation model, the second term
in equation (3) is neglected which is common in stepping motor motion control literature [5]. The
mechanical load is modelled as an inertia J, a damping b and a constant load torque Tload as indicated in
Fig. 8, the data used in the model is depicted in Fig. 16. This model is used to simulate the torque and
load angle behaviour for different drive algorithms.

Full-Step
For the full-step algorithm, as illustrated in Fig. 5, only one phase at a time is excited. When a full-step
command is given, the excitation of one phase is released while another phase is excited. The angular



electric position β of the current vector is changes with π/2 at every full-step command, meaning the
following pattern for β:

β = [0, π/2, π, 3π/2, 0+2π, π/2+2π, π+2π, 3π/2+2π, . . . ] (4)

Incrementing β gives rise to an abrupt change of the load angle δ and the motor torque Tmotor both
characterized by a large ripple. This results in rather large steps of the mechanical angular position θ.

Half-Step
When both phases are excited simultaneously (Fig. 7), a stable operating point 1 between 0 and 2 is
obtained. The β increment is halved compared to the full-step operation, resulting in the following
pattern:

β = [0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, . . . ] (5)

To obtain the same rotational speed, these so called half-step commands have to come twice as fast.
As the excitation for the half-step drive algorithm illustrated in Fig. 7 alters between a maximum current
in one phase and maximum current in two phases, the maximum torque is either 100% or 141% as
illustrated by the length of the vector in the right part of Fig. 7. Because of this maximum torque
variation, the drive algorithm proposed in Fig. 7 results in a more vibrating and noisy behaviour as
indicated in Fig. 8.
However, more recent stepping motor drivers allow to adjust the current setpoint to obtain a constant
maximum torque ( Fig. 9 ). This half-step algorithm results in a reduced torque ripple and less vibrating
behavior as illustrated in Fig. 10.

Micro-Step
Finally, micro-stepping (Fig. 11) is based on additional current setpoints which are a fraction of the
maximum current. This approach makes it possible to further reduce the step angle. As the step angle
decreases, the movement becomes smoother as indicated in Fig. 12. Comparing Fig. 6 with Fig. 12
shows that a finer micro- stepping drive algorithm results in a much smoother operation. Fig. 13 is
obtained using a 1/256th micro-stepping algorithm diminishing the vibrating behavior of a stepping
motor drive system.

Torque Ripples Due To The Stepping Motor Construction
To identify the impact of the stepping motor drive algorithm a simplified version of equation (3) was used
in the previous section. However, to study the effect of the stepping motor construction the complete
equation (3) is considered. The second term in this equation describes the reluctance effect which is
based on the difference between the direct axis inductance Ld and the quadrature axis inductance Lq.
Contant Ld and Lq values can be used if only the toothed rotor character of the rotor is considered.
Hence, as illustrated in Fig. 1b the stator surface is also toothed meaning both Ld and Lq depend on the
angular rotor position [1]. Measurements in [6] show the inductance difference can be written as:

Ld −Lq =−∆L+2.L̄.sin(θelectrical) (6)

The block diagram of the simulation taking the toothed character of both rotor and stator into account is
given in Fig. 14. To exclude the impact of the drive algorithm, instead of moving the the current vector
is in discrete steps, is is given a constant rotational speed. The amplitude of the oscillation, caused by
the toothed construction of rotor and stator, highly depends on the mechanical load (depicted in Fig. 16)
and the speed setpoint. Fig. 15 shows simulation results at 190rpm. From this simulation it is clear that
the toothed construction can cause significant torque ripples and corresponding load angle oscillations.
The number of stator teeth determines the frequency of these oscillations ωδ. Having p stator teeth and
a rotor speed of ωm rad/s, ωδ can be written as:

ωδ = ps.ωm (7)
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Figure 4: Diagram simulating the angular position, torque and load angle behavior
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Figure 5: Full-step excitation scheme (left)
and stable rotor positions (right)
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Figure 6: Simulated (according to
Fig. 4) behavior of a full-step
drive algorithm
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Figure 7: Half-step excitation scheme (left)
and stable rotor positions (right)
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Figure 8: Simulated (according to
Fig. 4) behavior of a half-step
drive algorithm
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Figure 9: Compensated half-step excitation
scheme (left) and stable rotor positions (right)
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Figure 10: Simulated (according
to Fig. 4) behavior of a compen-
sated half-step drive algorithm
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Figure 11: 1/4th micro-stepping excitation
scheme (left) and stable rotor positions (right)
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Figure 12: Simulated (according
to Fig. 4) behavior of a 1/4th
micro-stepping drive algorithm

Measurements
Load angle oscillations implies torque ripples, vibrations and noise. To characterize these vibrations the
variance of the load angle Var(δ) is used:

Var(δ) =
1
n
.

n

∑
i=1

(δ−δmean)
2 (8)
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Figure 13: Simulated (according
to Fig. 8) behavior of a very fine
micro-stepping drive algorithm
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Figure 14: Block schematic representation of
the angular position, torque and load angle be-
havior for a toothed rotor and stator construc-
tion
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Figure 15: Simulations results at a
constant speed of 190rpm accord-
ing to Fig. 14 taking inductance
variation into account
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Figure 16: Test-rig
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Figure 17: Measured load angle oscilla-
tions using a full-step drive algorithm
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Figure 18: Measured load angle oscilla-
tions using a half-step drive algorithm
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Figure 19: Measured load angle oscilla-
tions using a 1/4th micro-step drive al-
gorithm
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Figure 20: Measured load angle oscilla-
tions using a very fine micro-step drive
algorithm

Var(δ) is measured at different speeds and load torques for 4 different drive-algorithms. Speed setpoints
are changed in steps of 2% of nmax while the load torque is incremented with 6% of Tmax. The results are
depicted in Fig. 17 to Fig. 20 where different colors are used to indicate the level of vibrations.



Fig. 3 indicates the maximum generated motor torque is available at a load angle of approximately π/2
rad. This means, heavy torsional vibrations leading to load angle values exceeding π/2 rad result in step-
loss. The areas where this phenomenon occurs are indicted in Fig. 17 to Fig. 20 in deep red. This implies
the stepping motor cannot be driven with the given algorithm at these speed setpoints and load torques.
Fig. 17 shows that vibrations and the resulting step-loss seriously limits the operating range in full-step.
As indicated by the simulations in Figs. 6, 8, 10, 12, 13 these vibrations are decimated when a full-step is
divided in more micro-steps. However, even when the rotational speed β̇ of the current excitation vector
is constant speed as in Fig. 20 the toothed rotor and stator construction causes torsional vibrations. After
a step command pulse the rotor oscillates, as seen in Fig. 13, with a frequency of 108Hz. This means,
if the frequency of the step command pulses is 108Hz or a multiple of it, resonance will occur. These
resonances, visible at 130 rpm in Fig. 17 to Fig. 20 can result in step-loss. Especially for full- and half-
step these resonance frequencies result in an uncontrollable stepping motor at those speed setpoints.

Conclusion
Typical problems for an open-loop stepping motor drive system include a large torque ripple, vibrations
and a noisy operation. In this paper the two main causes of these torque ripples are discussed. First of all
the drive algorithms using discrete displacements of the current excitation vector can result in a vibrating
behavior. As a full-step is divided in more fine micro-steps the torque-ripples are heavily reduced as
proven in this paper both by simulations and measurements. However, the toothed stator and rotor
construction of a hybrid stepping motor also contributes to the torque ripples. This effect is explained
in this paper based on the torque equation. Measurements and simulations for a 1/256 micro-stepping
algorithm show these vibrations are significant at certain operating points.
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