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Abstract—The growing popularity of over the top (OTT) video
streaming services has led to a strong increase in bandwidth
capacity requirements in the network. By deploying intermediary
caches, closer to the end-users, popular content can be served
faster and without increasing backbone traffic. Designing an
appropriate replacement strategy for such caching networks is
of utmost importance to achieve high caching efficiency and
reduce the network load. Typically, a video stream is temporally
segmented into smaller chunks that can be accessed and decoded
independently. This temporal segmentation leads to a strong
relationship between consecutive segments of the same video.
Therefore, caching strategies have been developed, taking into
account the temporal structure of the video. In this paper, we
propose a novel caching strategy that takes advantage of clients
announcing which videos will be watched in the near future, e.g.,
based on predicted requests for subsequent episodes of the same
TV show. Based on a Video-on-Demand (VoD) production request
trace, the presented algorithm is evaluated for a wide range of
user behavior and request announcement models. In a realistic
scenario, a performance increase of 11% can be achieved in terms
of hit ratio, compared to the state-of-the-art.

I. INTRODUCTION

Traditionally, channel-based networks (e.g., satellite, cable
networks) were used to distribute linear TV, benefiting from
the broadcast nature of these networks. Using multicast ca-
pabilities, packet-based networks also support a scalable way
of distributing live video. Moreover, packet-based networks
are able to support personalized on-demand video services
where a video library is offered by means of a catalog and
separate sessions are set up for each individual user. However,
while in linear TV the amount of video traffic is proportional
to the number of channels, in an on-demand system the
traffic is proportional to the number of users. This leads to a
major increase in capacity requirements for on-demand video
delivery.

By deploying intermediary caches, closer to the end-users,
popular content can be served faster and without increasing
backbone traffic. Since video interests are shared between users
and their viewing interests overlap in time, deploying these
caches can substantially reduce the required capacity by taking
advantage of these overlapping sessions. Caching networks
(e.g., Content Delivery Networks (CDNs)) were traditionally
used to deliver web content in a scalable way and reduce
latency by temporally storing part of the content in a network
of caches close to the end-users. However, the use of caching

in a streaming environment differs from the traditional web-
based caching, since the objects are typically much larger and
are to be consumed directly after they have been requested.
Therefore, video delivered over caching networks is typically
temporally segmented into smaller chunks that can be accessed
and decoded independently.

Designing an appropriate replacement strategy for such
caching networks is of utmost importance to achieve high
caching efficiency and reduce the network load. Most caching
algorithms are based on observations and take into account
the recency or frequency of requests to calculate the rank
of each of the cached objects. When caching temporally
segmented video, as is the case in HTTP-based streaming
systems, the caching algorithm can also take into account the
temporal structure of the video. That is, when the streaming
application requests the n-th segment at a specific point in
time, the caching strategy can take advantage of the knowledge
that the (n+1)-th and subsequent segments will be consumed
shortly after this segment. Therefore, when multiple streaming
sessions request the same segmented content, the caching
strategy can take advantage of this knowledge to keep the
segments in cache that are to be consumed in the near future.

Caching strategies can be further improved by taking into
account additional information, such as content popularity and
regional differences. The optimal caching algorithm (known
as Belady’s MIN [1]) takes advantage of the knowledge on
future requests to discard the objects for which the next request
occurs the furthest in the future. In a real system, this infor-
mation on future requests is not directly available. However,
studies1 on user behavior for over the top (OTT) streaming
services report that respectively 88% and 70% of the Netflix
and Hulu Plus users stream three or more consecutive episodes
of the same TV show (referred to as binging). Furthermore,
binging is reported to become the moderate behavior with users
streaming on average 2.3 episodes per sitting2, resulting in
about 57% of the streaming sessions that could be announced
in advance. The same trend can be expected for YouTube
videos, where the autoplay feature recently became auto-
enabled3. Taking into account these announcements allows

1Nielsen - http://www.nielsen.com/us/en/insights/news/2013/binging-is-the-
new-viewing-for-over-the-top-streamers.html

2Cinemablend - http://www.cinemablend.com/television/Unsurprising-
Netflix-Survey-Indicates-People-Like-Binge-Watch-TV-61045.html

3MarketingLand - http://marketingland.com/autoplay-is-now-the-default-
for-youtube-videos-122555
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us to predict future segment requests and thus approximating
the theoretical optimal caching strategy. Furthermore, Service
Providers (SPs) could give incentives (e.g., discounts, higher
resolution video (4K) when requested upfront) to users when
they announce their streaming sessions in advance.

In this paper, a novel caching strategy is proposed that takes
advantage of the inferred knowledge of future segment requests
when streaming segmented video and additionally exploits the
added knowledge when streaming clients announce the videos
that will be streamed in the near future. Using this additional
information, we are able to estimate the future reuse times
of the segmented content. These reuse times are then used to
apply the Belady’s MIN eviction strategy. This allows us to
increase the caching efficiency compared to using only reuse
time predictions based on the structure of the segmented video.

The main contributions of this paper are threefold. First,
we propose a novel caching strategy that outperforms the
current state-of-the-art strategies by including knowledge on
segmented video streaming and announced future video re-
quests. Second, we use user behavior models to emulate video
interruptions and evaluate their impact on the proposed and
state-of-the-art caching strategies. Finally, the proposed strat-
egy is thoroughly evaluated in a distributed caching scenario.

II. RELATED WORK

Web caching was introduced as a way to save traffic and
minimize the perceived delay on the Internet by storing data
closer to the end-user. Many caching algorithms have been
proposed in the past and stem from replacement strategies for
both web proxy caching and CPU caching. Least Recently
Used (LRU) is based on the recency of the cached objects
and discards the least recently used items first. This type of
caching algorithms is know to attach too much importance
to unpopular objects, awarding them the highest rank upon a
single request. Least Frequently Used (LFU) determines the
number of requests for an object over a period of time and
discards the least frequently used objects first. This type of
caching algorithms is known to attach as much importance
to ancient as to recent history. To account for this, dynamic
aging factors are introduced to improve the performance
in LFU Dynamic Aging (LFU-DA). Adaptive Replacement
Cache (ARC) balances between LRU and LFU by using more
complex algorithms to determine the rank [2].

The aforementioned replacement strategies are widely used
in web caches. Caching for video streaming differs from
caching web content in a number of ways. First, video objects
are typically much larger than traditional web objects such as
text and images. Second, there is a difference in popularity
evolution for streaming videos compared to web content.
Furthermore, in contrast to web objects, having only the
beginning of a video allows a video application to already
start playout while the download continues [3]. This has
led to the adoption of segment-based caching of multimedia
streams, where data blocks of the video objects are grouped
into segments. These segments can have variable size, e.g.,
smaller segments at the start of the video to decrease start-
up delays. Cache admission and replacement policies have
been proposed for such segmented video that take into account
the distance from the start of the video and where segment

sizes are exponentially increasing with their distance to the
start of the video [4]. Wu et al. define three segmentation
approaches for proxy caching: fixed length segments, pyramid
with exponentially increasing segment sizes and skyscraper
where sizes increase slower compared to the pyramid scheme
by repeating each layer n times [5]. The authors conclude
that segmentation approaches are particularly effective when
the cache size is limited, media popularity changes over time,
requests are spread over a large number of media objects and
when the media file size and library is large.

Chen et al. propose a streaming proxy system called Hyper
Proxy, which uses active prefetching for in-time delivery of
uncached segments to address the proxy jitter problem [6].
This work was extended by adding segmentation strategies
based on object popularity and by using predictions of future
segment requests to preload uncached segments [7]. In pre-
vious work, a proactive cache management system for multi-
tenant CDNs was proposed that optimizes content placement
and server selection based on content popularity and geo-
graphical distribution of requests [8]. In this paper we focus
on reactive caching approaches leveraging video structure
and request announcements rather than proactively placing
content into network caches. Other approaches use a two-tier
cache that distinguishes between to-be-played and possibly
played segments, partitioning the cache in two layers that
are dynamically scaled [9]. The approach of dynamic cache
partitioning has also been applied by Wauters et al., where
caching decisions in a time-shifted television service are based
on content popularity metrics [10]. Popularity-based caching
approaches have also been proposed by De Vleeschauwer et
al. [11].

Marinca et al. use an analysis of the clients’ request
over passed time intervals to predict the content that will be
requested in the near future [12]. By using a history window
of the past 24 hours allows reducing the traffic with about
30%. Others evaluate the impact of dynamic sizing between
prefix and suffix caching for segmented video [13]. Hong et
al. propose a ranking scheme that follows the dynamicity of
the video library [14]. The rank is based on the linearity of
the video that if a chunk is requested, the next chunk will
be requested with high probability in the near future. To this
end each segment is assigned a value based on the number of
viewers who are watching the video and will probably request
the segment in the future. This value reflects the number of hits
that this particular segment will receive in the future. Based
on this value a rank is calculated that evicts the segments with
the least chance of being reused in the future. In this paper,
we additionally take into account the timing information of
future requests by considering video request announcements
to further increase the cache performance.

The MIN cache replacement algorithm proposed by Belady
et al. is an offline eviction strategy that has been proven to be
optimal [1]. It requires advanced knowledge of the requested
content, and based on this information, chooses to evict the
item in the cache whose next request occurs furthest in the
future. Van Roy et al. propose a proof of optimality for the MIN
cache replacement algorithm based on a dynamic programming
argument [15]. Wu et al. make use of the natural linear time
structure of segmented video to propose a caching algorithm
based on the exact reuse time [16]. This reuse time indicates
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Figure 1. Illustration of the deadline announcement process.

when a cached segment will be reused and allows the eviction
strategy to determine the segment request that will occur the
furthest in the future. The authors do not take into account
the delivery times between the different nodes in the network,
only a single cache is assumed and the sessions are never
interrupted. Our proposed approach not only uses the temporal
structure of segmented video but also includes information
of announced sessions. Furthermore, we also use interruption
models to simulate user churn and use a hierarchy of caches
where the delivery times between the different nodes are taken
into account.

Recently, protocols have been proposed that support the
announcement of deadlines, applied in this work. Shared
Content Addressing Protocol (SCAP) is a transport protocol
aimed at optimizing the delivery process that allows in-
network intermediary elements to participate in delivering the
content [17]. Furthermore it offers support for intermediary
caches, multicast-like delivery of shared content requests and
announcing deadlines for the delivery of the content. Similar
features are also provided by Information-Centric Networking
(ICN) architectures [18]. These architectures allow content to
be duplicated everywhere in the network, enabling in-network
caching at a fine granularity [19].

III. DEADLINE AWARE CACHE REPLACEMENT

In the proposed approach, the caching nodes keep track of
the start times of video streaming sessions. In the remainder
of this paper, the start times of a video playout will be
called deadlines. Based on these deadlines, a node can decide
which segments to keep in its cache and which to remove. In
Section III-A, the management of the deadlines is described.
Section III-B describes the proposed novel cache replacement
strategy.

A. Deadline management

Deadlines can either be announced by the client in advance
of the streaming session, or be determined by the caching
node at the arrival of a segment request. As both types of
deadlines will play a different role in the replacement strategy,
each caching node keeps track of both a set of announced
deadlines DA and perceived deadlines DP .

1) Deadline announces: When a client announces a dead-
line, he sends the video ID and the future start time of the
playout to the first caching node on the path to the server
hosting the video. Each node then decides whether to accept
the deadline locally or to cascade it to the next hop on
the path. A node will only decide to accept the announced
deadline, and add it to DA, if it estimates to be able to serve
at least a relative part α of the video from its local cache.
This estimation is based on the number of segments of the
considered video that is already present in the cache, combined
with the segments that are estimated to arrive before the new
deadline, based on known earlier deadlines. The value of α
serves as a deadline acceptance threshold and provides a basic
form of coordination between the caches. If the node is not
able to meet the threshold α, it does not accept the deadline
and cascades it to the next hop on the path to the server. An
illustration of this process is given in Fig. 1. A client sends
a deadline announcement for video v to the edge node E2.
As the number of cached segments for video v is below the
deadline acceptance threshold α, E2 cascades the deadline to
the next hop C2 where it can be accepted and the cascading
process is terminated.

2) Deadline determination: Upon arrival of a segment
request for a specific video v, a caching node can easily
determine the deadline dv of the video playout as defined
in equation (1), where x, t and lv respectively denote the
requested segment number, the current time and the segment
length of video v. When the node does not have an announced
deadline for the specified video at time dv , either because the
client did not announce the deadline or because the node could
not accept it, it stores dv as a perceived deadline in DP .

dv = t− x× lv (1)

3) Deadline expiration: When a streaming session ends,
the corresponding deadline can be removed from the caching
nodes. When a streaming session ends before the end of the
video, the client will inform the first node on the path to the
server about the finished session only if the streaming session
was announced in advance. In this case, the notification is
cascaded until it reaches the node that accepted the deadline,
where the deadline is removed from the set of announced
deadlines DA. The nodes are not informed about finished
streaming session that were not announced or that were not
accepted. For this reason, perceived deadlines dv ∈ DP are
only removed when the session is known to have ended, even
if it was interrupted prematurely. For a deadline dv , this is the
case when t > dv + Lv , with t and Lv denoting the current
time and the total length of video v respectively.

B. Replacement strategy

Using the information contained in the announced and
perceived deadlines, each node can decide which segments to
keep in its cache, and which can be removed. For this purpose,
the concept of earliest reuse times is applied. For each deadline
dv for a specific video v, the reuse time rdvvx of each segment vx
of that video can easily be calculated using equation (2), where
x denotes the sequence number of segment vx. If rdvvx < t, with
t denoting the current time, the reuse time is set to infinity.
The earliest announced reuse time eAvx is then obtained as the



lowest reuse time rdvvx of all announced deadlines dv ∈ DA

for video v, a expressed in equation (3). Similarly, the earliest
perceived reuse time is obtained using equation (4). When
there are no announced or perceived deadlines for video v,
respectively eAvx or ePvx are said to be equal to infinity for
every segment vx of that video.

rdvvx = dv + x× lv (2)

eAvx = min
dv∈DA

rdvvx (3)

ePvx = min
dv∈DP

rdvvx (4)

When a segment vx of video v arrives at a node, the
node has to decide whether or not to add it to its local
cache C, if it is not already cached. If the remaining available
caching capacity is insufficient to store the new segment vx,
another segment can be selected for removal. This procedure
is outlined in Algorithm 1. First, the earliest announced and
perceived reuse times eAvx and ePvx of the newly arrived segment
are calculated as described above (line 1). Next, a segment
s′ ∈ C ∪ {vx} is selected as a candidate for eviction. This
segment s′ is selected as the segment with the maximal
earliest announced reuse time: s′ = argmaxs∈C∪{vx} e

A
s

(lines 4-6). When multiple such segments exist, the segment
with the maximal earliest perceived reuse time is selected:
s′ = argmaxs∈C∪{vx} e

P
s (lines 7-9). The LRU order is used

as a final tiebreaker (lines 10-13). When the evicted segment
s′ is a cached segment (s′ ∈ C), it is removed from the cache
and replaced by the new segment vx (lines 18-20).

Algorithm 1 Outline of the proposed cache eviction strategy
on arrival of a new segment vx.

1: Calculate eAvx and ePvx
2: s′ ← vx
3: for s ∈ C do
4: Calculate eAs and ePs
5: if eAs > eAs′ then
6: s′ ← s
7: else if eAs = eAs′ then
8: if ePs > eAs′ then
9: s′ ← s

10: else if ePs = eAs′ then
11: Calculate LRU ranks LRUs and LRUs′
12: if LRUs > LRUs′ then
13: s′ ← s
14: end if
15: end if
16: end if
17: end for
18: if s′ 6= vx then
19: Remove s′ from C
20: Add vx to C
21: end if

The rationale behind this approach is to keep the segments
in the cache that will be needed in the nearest future. However,
accepted announced deadlines are always prioritized, even if
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Figure 2. Number of daily requests in the considered VoD trace.

another segment has an earlier perceived deadline. This is done
to ensure that the cache will not violate the intent expressed
when accepting the deadline. It is important to note that when
no deadlines are announced, the algorithm behaves as a purely
reuse time based replacement strategy without coordination
between the caches, only taking into account the temporal
structure of videos in the form of earliest perceived reuse
times.

IV. EVALUATION SCENARIO DESCRIPTION

To evaluate the proposed approach, a request trace of
the Video-on-Demand (VoD) service of a leading European
telecom operator has been used. Section IV-A describes the
characteristics of this trace, while the applied session dura-
tion models, simulating the user behavior, are described in
Section IV-B. Finally, the considered network topology is
described in Section IV-C.

A. VoD trace characteristics

The trace was collected over a period of 30 days between
Saturday February 6, 2010 and Sunday March 7, 2010. Due to
a failure of the probing nodes, a couple of hours of monitoring
data was missing for February 12, 2010 and February 19,
2010. These gaps have been filled by considering the request
pattern of the same period in the previous week, mapped on the
content popularity of the last day. The resulting trace contains
monitoring information of 108,392 requests for 5644 unique
videos, originating from 8825 unique users, spread across 12
cities. In this work, all videos are considered to have an equal
length of 50 minutes and a bitrate of 1Mbit/s, resulting in a
size of 375Mbyte for each video. The entire video catalog thus
measures about 2Tbyte.

Fig. 2 depicts the evolution of the number of video requests
per day over the considered time period. In this graph, a
clear weekly pattern can be observed. The five peaks in the
graph correspond to the five weekends, with increased activity
on Friday, Saturday and Sunday. As Fig. 2 only shows per-
day aggregated data for sake of visibility, the underlying
diurnal trend cannot be seen. For Wednesdays and Sundays, the
activity peak is situated between 4:30pm and 6:30pm, while
for the other days of the week, the largest number of requests
is reported between 8pm and 10pm.
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B. Session duration

In contrast to most other work, we take into account the fact
that users do not necessarily stream a video entirely, but may
interrupt the session mid-stream. Multiple models have been
represented in literature to represent the session duration in
video streaming services. Ullah et al. provide a survey of user
behavior measurements in several types of video streaming
services [20]. According to this survey, the session duration
of most VoD services can be modelled using an exponential
distribution. To deal with the fixed content length in this
work, a normalized exponential distribution was used to model
the session duration in our experiments. The cummulative
probability p(x) of a session to last at most a relative part
x ∈ [0; 1] of the video is calculated using equation (5), where
the value of λ depends on the video type. The average relative
session duration in function of λ is presented in Fig. 3. To
show the general applicability of our approach, evaluations
have been performed using different values for λ, resulting in
both shorter and longer average session durations. The scenario
where all videos are streamed entirely is modelled as λ = −∞.

p(x) =
1− e−λx

1− e−λ
(5)

C. Network topology

To evaluate the performance of the proposed algorithm in
a distributed scenario, a GÉANT-based topology4, consisting
of 23 nodes, has been used. As described in Section IV-A,
the employed VoD request trace contains 12 cities, which we
map onto 12 edge nodes. One node is assigned as server
node S, hosting all video content. The 10 remaining nodes
are modelled as core nodes, for which the 10 most connected
nodes were selected. The resulting topology is shown in Fig. 4.

Unless otherwise stated, the total caching capacity in
the network is equal to 5% of the total catalog size (i.e.
105,750Mbyte). In each experiment, the total caching capacity
was spread uniformely across the topology, with the edge
nodes having half of the capacity of the core nodes (i.e.
core node capacity of 6,610Mbyte, edge node capacity of
3,305Mbyte).

4GÉANT Project - http://www.geant.net
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Table I. EVALUATED PARAMETER CONFIGURATIONS.

Parameter Values
Norm. exp. dur. model λ -∞, -7, -3, 0.05, 3, 7
Announcement ratio 0%, 20%, 40%, 60%, 80%, 100%
Announcement timeframe 1-10min, 20-50min, 1-24h
Acceptance threshold α 0%, 25%, 50%, 75%

V. EVALUATION RESULTS

To thoroughly evaluate the performance of the proposed
approach, experiments have been performed for a wide range
of scenarios. Multiple values of λ have been used to simulate
various session duration models, based on (5). Furthermore,
different deadline announcement strategies have been inves-
tigated, ranging from short-term annoucements (1-10 minutes
prior to playout) to long-term announcements (1-24 hours prior
to playout). For each of the evaluated timeframes, the deadlines
are announced at a specific time prior to video playout,
uniformely distributed between the timeframe bounds. The
ratio of streaming sessions for which a deadline is announced
in advance is also varied throughout the experiments. Finally,
the impact of the deadline acceptance threshold α was evalu-
ated. A summary of the evaluated parameter configurations is
presented in Table I.

In all of the evaluations, the performance of the proposed
approach is compared to the LRU caching strategy. Unless
otherwise stated, relative performance gain is always expressed
with respect to the LRU approach. In the remainder of this
paper, the hit ratio will be defined as the ratio between the
number of requests that are served from a cache in the network
and the total number of segment requests sent by the clients.

A. Impact of deadline acceptance threshold α

As described in Section III-A, the deadline acceptance
threshold α is used to decide whether to accept an announced
deadline or to cascade it to the next hop. To evaluate the
pure impact of this parameter, without interference of the user
behavior, the scenario where all videos are viewed in totality
(λ = −∞) is considered. Deadline announcement times are
uniformely distributed between 20min and 50min prior to
video playout.

Fig. 5 shows the hit ratio of the proposed approach, relative
to the hit ratio of the LRU approach, for different values of α
under varying request announcement ratios. It can be seen that
the best results can be achieved with a deadline acceptance
threshold α of 25%. Similar results are obtained when the
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Figure 5. Impact of the deadline acceptance threshold α on the relative hit
ratio compared to LRU, when deadlines are announced 20min to 50min prior
to playout.
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Figure 6. Impact of the deadline acceptance threshold α on the relative hit
ratio compared to LRU, when deadlines are announced 1h to 24h prior to
playout.

deadlines are announced closer to the session start (1min to
10min prior to playout).

However, as can be seen in Fig. 6, the approach with
α = 25% is slightly outperformed by the approach with
α = 0% when deadlines are announced more in advance
(1h to 24h prior to playout). This behavior can be explained
by the inter arrival times of requests in the considered VoD
trace. The median time between two requests for the same
content in the entire network amounts to 1h11min, while the
median time between two requests for the same content from
a single location amounts to 6h48min. When deadlines are
announced 1h to 24h in advance, the average time between the
announcement of a deadline and the video playout significantly
exceeds the average inter arrival time on a single location.
Therefore, a next deadline for a video will likely be announced
prior to the end of an active session. In this way, only few
deadlines will not be able to be reused, so all deadlines can be
accepted directly. When announcements are made in a shorter
timeframe, deadlines have higher reusage probability on the
core nodes, as these perceive requests from multiple edge
nodes. Therefore, higher values of α yield better performance.
Given this bad performance using α = 0% with shorter term
announcements, the deadline acceptance threshold α = 25%
can generally be selected as the best configuration.

The impact of the threshold α on the deadline acceptance
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Figure 7. Impact of the deadline acceptance threshold α on the deadline
acceptance in the network, averaged over all scenarios.

Table II. AVERAGE SESSION DURATION FOR THE CONSIDERED VALUES
OF λ.

λ Avg. session duration
-∞ 100%
-7 85.81%
-3 71.91%

0.05 49.58%
3 28.10%
7 14.19%

in the network is shown in Fig. 7, averaged over all deadline
announcement and user behavior scenarios. The results for
α = 0% are omitted for visibility reasons, as in this case
all deadlines get accepted at the edge nodes. As expected, the
number of accepted deadlines decreases with higher values
of α. Furthermore, when α increases, a bigger part of the
deadlines is accepted in the network core nodes. This can
again be explained by the fact that core nodes simultaneously
perceive requests of multiple edge nodes, such that cached
segments can be reused across geographical locations.

B. Impact of deadline announcement timeframe

The timeframe in which deadlines are announced prior to
playout defines the time window the caches can use to base
the replacement decisions on. The impact of this timeframe on
the performance of the proposed approach with an acceptance
threshold α = 25% in a scenario where all sessions are viewed
in totality (λ = −∞) is shown in Fig. 8. As could be expected,
a higher performance increase can be achieved when deadlines
are announced more in advance.

In a realistic scenario where deadlines are announced 20 to
50 minutes prior to playout (e.g., when announcing the playout
of a consecutive episode of the same TV show), announcing
60% of the deadlines yields a significant performance increase
of 69.61% compared to LRU and 8.82% compared to a
reuse time based replacement strategy. When deadlines are
announced closer to the session start, the gain compared to
a reuse time based replacement strategy is limited.

C. Impact of session duration model

Up to now, users were considered to always stream a video
entirely. However, as session churn limits the accuracy of the
deadlines, the user behavior will likely impact the performance
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Figure 8. Impact of the deadline announcement timeframe on the relative
hit ratio compared to LRU with a deadline acceptance threshold α = 25%.
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Figure 9. Impact of the session duration model parameter λ on the relative
hit ratio compared to LRU with a deadline acceptance threshold α = 25%
and deadline announcements 20-50 minutes in advance.

of the proposed deadline based approach. As described in Sec-
tion IV-B, a normalized exponential session duration model has
been applied. The average session durations for the considered
values of λ are presented in Table II, while the impact of this
parameter on the performance of the approach is shown in
Fig. 9. As expected, the performance gain increases with a
growing average session duration. Furthermore, when the aver-
age session duration increases, the gain of taking into account
the announced deadlines is higher. This can also be seen in
Fig. 10, showing the impact of the average session duration on
the relative hit ratio for various session announcement ratios.
For each announcement ratio, the performance gain grows with
an increasing average session duration, but a steeper growth
can be seen when more deadlines are announced.

D. Performance comparison

Finally, the performance of the proposed approach can be
evaluated in a realistic scenario where users watch 72% of
a video on average (λ = −3) and deadlines are announced
20 to 50 minutes in advance of the playout. Fig. 11 provides
a comparison in terms of hit ratio between the proposed
approach, the LRU approach and a purely reuse time based
approach, comparable to the approach proposed by Wu et al.
[16]. It can be seen that taking into account the temporal
structure of the content in the replacement strategy leads to
a significant performance increase of 38.86% compared to the
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Figure 10. Impact of the average session duration on the relative hit ratio
compared to LRU with a deadline acceptance threshold α = 25% and deadline
announcements 20-50 minutes in advance.
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Figure 11. Performance comparison in terms of hit ratio in a realistic scenario
where users watch 72% of a video on average and deadlines are announced
20-50 minutes in advance.

LRU strategy. Taking into account the announced deadlines
results in an additional performance increase of up to 16.33%,
depending on the amount of announced deadlines.

Taking into account the user behaviour studies described
in Section I, in current OTT streaming services such as Netflix
and Hulu, up to 60% of the sessions could be announced
in advance. As presented in Table III, in this scenario, the
proposed approach yields a hit ratio being 53.75% higher
than the hit ratio using the LRU strategy and 10.72% higher
compared to a reuse time based strategy. This results in a
reduction of average hop count of 9.32% and 2.73% compared
to the LRU and reuse time based strategy, respectively. In
terms of average bandwidth usage spread across the network,
a reduction of 9.66% and 3.06% is achieved respectively.

VI. CONCLUSION

In this paper, a deadline based cache replacement strategy
for Video-on-Demand (VoD) systems was presented. This

Table III. PERFORMANCE COMPARISON.

Criteria LRU Reuse time based Deadline based
Hit ratio (%) 20.02 27.80 30.78
Avg. hop count 2.36 2.20 2.14
Avg. bandwidth (Mbps) 215.22 200.56 194.43



strategy not only takes into account the temporal structure
of videos, but also takes advantage of the phenomenon of
binging where users watch multiple consecutive episodes of the
same TV show. This allows a significant part of the streaming
sessions to be announced in advance of the actual video play-
out. The deadline based cache replacement approach has been
thoroughly evaluated in a wide range of session announcement
and user behavior scenarios using a VoD production request
trace. It was shown that in a realistic scenario, intelligently
taking into account the session announcements in the cache
replacement decisions can result in a hit ratio increase of
54% compared to the LRU strategy and 11% compared to
the state-of-the-art. Future work will focus on investigating an
increased coordination between the caches in the network to
further guide caching decisions and avoid duplicated elements.
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