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Abstract— Microscopy is a valuable imaging tool in vari-
ous biomedical research areas. Recent developments have made
high resolution acquisition possible within a relatively short
time. State-of-the-art imaging equipment such as serial block-
face electron microscopes acquire gigabytes of data in a matter
of hours. In order to make these amounts of data manageable,
a more data-efficient representation is required. A popular ap-
proach for such data efficiency are superpixels which are de-
signed to cluster homogeneous regions without crossing object
boundaries. The use of superpixels as a pre-processing step has
shown significant improvements in making computationally in-
tensive computer vision analysis algorithms more tractable on
large amounts of data. However, microscopy datasets in partic-
ular can be degraded by noise and most superpixel algorithms
do not take this artifact into account. In this paper, we give a
quantitative and qualitative comparison of superpixels gener-
ated on original and denoised images. We show that several ad-
vanced superpixel techniques are hampered by noise artifacts
and require denoising and parameter tuning as a pre-processing
step. The evaluation is performed on the Berkeley segmenta-
tion dataset as well as on fluorescence and scanning electron mi-
croscopy data.

Keywords— Fluorescence microscopy, electron microscopy,
segmentation, superpixels, denoising

I. INTRODUCTION

Parkinson’s and Alzheimer’s disease, various types of can-
cer and other inflammatory diseases are examples of high-
impact disorders that are currently being investigated exten-
sively using microscopy. In essence, these diseases are caused
by cellular disorders, making visualization of ultrastructural
cell content a crucial step. Fluorescence and electron mi-
croscopy (FM and EM, respectively) allow biomedical users
to do this by generating nanometer and even Angström reso-
lution images.

One of the consequences of high resolution microscopy
is that the user is forced to capture hundreds of millions
of pixels in order to visualize whole cells. An important

step in biomedical image analysis is to segment this enor-
mous amount of data, which requires advanced computer vi-
sion algorithms because of the complex ultrastructural con-
tent. However, users are often forced to low-complexity al-
gorithms [1] (mostly leading to low-quality results) or even
manual labour, because more advanced and robust algorithms
(e.g. model based techniques [2]) are simply not tractable for
this kind of datasets. For example, in [3] a team of 224 peo-
ple manually annotated 950 neurons in a 1 million µm3 EM
dataset at nanometer resolution, leading to more than 20000
annotator hours. As a result, microscopy image analysis be-
comes a tedious and time-consuming process.

Additionally, FM and EM tend to introduce acquisition-
dependent noise artifacts [4, 5]. In order to reduce this noise
as much as possible, ordinary denoising algorithms assuming
white, Gaussian noise will be suboptimal. Instead, a more ex-
plicit noise model as in [6] will give better denoising results.

To make advanced segmentation algorithms usable, mi-
croscopy datasets can be represented as a connected graph of
superpixels instead of pixels [7–9]. Superpixels are defined as
a coherent set of similar pixels, where the similarity between
pixels usually is defined in terms of intensity or texture. They
are ideally designed not to cross object boundaries and are
therefore excellent to limit the large number of pixels to a
much smaller number of superpixels, without losing impor-
tant image information. Boundary preservation is therefore
a crucial property for these techniques. However, noise arti-
facts which are very common in microscopy imaging, typ-
ically cause uncertainty around object boundaries. Despite
this fact, it has never been validated whether noise has a sig-
nificant impact on superpixel quality in microscopy images.

In this paper, we illustrate the quality impact of state-of-
the-art superpixel algorithms when confronted with different
types of noise that appear in microscopy. We show that recent
superpixel algorithms lose boundary information on noisy
data and require a denoising pre-processing step in order to
improve the latter. The results were derived on the Berkeley
segmentation dataset [10] (BSD) and annotated FM and scan-
ning EM (SEM) datasets.

The structure of this paper is as follows: in Section II, we
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will give a description of the superpixel and denoising algo-
rithms that were used in the experiments. Next, we will de-
scribe and discuss the performed experiments in more detail
in Section III. Section IV finalizes this paper with a conclu-
sion.

II. BACKGROUND

Before giving an overview of the experiments, we will give
a brief description of the superpixel and denoising techniques
that were evaluated.

A. Superpixels

A superpixel segmentation can be described as a con-
trolled oversegmentation of an image. This control is usu-
ally implemented as e.g. desired intensity or texture similar-
ity within superpixels, boundary preservation, similar size or
shape, etc.

Superpixel algorithms can be categorized in two types,
based on the superpixel compactness. Compact superpixels
are usually described as nearly circularly shaped segments
of approximately the same size. Techniques producing this
kind of superpixels such as [11–13] force homogeneity in
the superpixel shapes and sizes. Non-compact superpixel al-
gorithms such as [14, 15], allow shape and size variability.
Compact techniques have the advantage of superpixel size
flexibility and shape consistency, which is convenient for de-
veloping e.g. subsequent segmentation algorithms. However,
in some cases, the compactness constraint is too strong, re-
sulting in a loss of boundary preservation. Non-compact al-
gorithms may solve this problem. The downside of these al-
gorithms is that they are sensitive to leaking, when an edge
is less apparent (due to e.g. noise or blur) and allows a seg-
ment to ‘leak through’ the object boundary. Therefore, the
choice of compact or non-compact superpixel algorithms is
application-dependent in practice. In our experiments, we
will compare the most recently developed compact and non-
compact superpixel algorithms: Simple Linear Iterative Clus-
tering (SLIC, [13]), TurboPixels (TP, [12]) and graph-based
superpixels (GB, [15]).

Since our main focus here does not lie on the techniques
themselves, we will only give a brief algorithmic descrip-
tion. For more in-depth explanation, we refer the reader to
the respective references. SLIC [13] is a k-means clustering
based algorithm, producing a number of compact superpix-
els by limiting the search space proportional to the desired
superpixel size and combining intensity and spatial distance
measures. TP [12] produces a number of compact superpixels
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Fig. 1: (a) A cropped EM image, (b) SLIC, (c) TP and (d) GB

superpixels. Both TP and SLIC produce compact superpixels as
opposed to GB which produces superpixels of variable sizes and

shapes.

by iteratively extending clusters according to the geometric-
flow, which is attracted to edges, but smaller in magnitude
in their vicinity. GB [15] forms non-compact superpixels by
representing an image as a weighted graph and merging two
subgraphs by evaluating if there is a boundary between the
two subgraphs. Figure 1 shows the segmentation results of
SLIC, TP and GB on a cropped EM image.

B. Denoising

Denoising is an image restoration technique where the la-
tent image has to be restored from an acquired, noisy im-
age. In general, one can distinguish between local [16], non-
local [17, 18] and regularized probabilistic [19] denoising al-
gorithms.

In our experiments, we will use our previously developed
NLMS-SC algorithm [6], which is based on the non-local
means algorithm [17] and specifically designed to handle
SEM noise (i.e. signal-dependent and correlated). Moreover,
it is also possible to handle signal-dependent (FM) or even
white noise using a special case of NLMS-SC. The algo-
rithm restores a noisy pixel by computing a weighted aver-
age of pixels with similar regions, where the weights are pre-
whitened to cancel out correlation and signal dependency ar-
tifacts. Figure 2 illustrates denoising in EM with NLMS-SC.



(a) (b)
Fig. 2: (a) A cropped EM image and (b) the restored image with

NLMS-SC.

III. EXPERIMENTS AND DISCUSSION

In our experimental setup, we wish to evaluate superpixel
quality with noisy and denoised input data. This requires a
quantitative evaluation metric that expresses the desired su-
perpixel properties.

A. Evaluation metrics

Quantitative superpixel evaluation metrics should express
how well the superpixel boundaries preserve object bound-
ary information. For example, in a superpixel-based segmen-
tation application, the detected segments will be less accu-
rate whenever superpixels are crossing object boundaries.
We will express boundary preservation in terms of a Haus-
dorff distance variant [20]. Given a groundtruth segmenta-
tion G = {g1,g2, . . . ,gn} and a superpixel segmentation S =
{s1,s2, . . . ,sm}, where gi and s j are boundary pixels corre-
sponding to segmentation or superpixel partitions (i.e. the red
borders in Figure 1). The proposed distance d(g,S) between
a groundtruth boundary pixel g ∈ G and a superpixel parti-
tion S is defined as the Euclidean distance of g to its closest
superpixel boundary pixel:

d(g,S) = min
s∈S

dE(g,s) (1)

where dE is defined as the spatial Euclidean distance. A
superpixel segmentation S will be validated on a com-
plete groundtruth segmentation G based on the histogram
of d(g,S) for all g ∈ G. High-quality superpixel segmenta-
tions, preserving boundary information will have more su-
perpixel edges in the vicinity of groundtruth boundaries and
less groundtruth boundary pixels that are not in the vicinity of
superpixel edges. Therefore, high-quality superpixel segmen-
tations will correspond to histograms that are more skewed
towards zero compared to low-quality superpixels.

Fig. 3: SLIC superpixels (left) on noisefree data (m = 60), (middle)
on noisy data with compactness adjustment (m = 140), (right) on

noisy data without compactness adjustment (m = 60).

B. Experiments

B..1 Experimental setup

We will evaluate superpixel quality on noisy and de-
noised data both visually and quantitatively. Therefore, we
obtained manually annotated Fluorescence Microscopy (FM)
and Scanning Electron Microscopy (SEM) data. The FM and
SEM datasets consist of 13 1388× 1040 and 112 1000×
1100 images, respectively. Recent research has shown that
these types of microscopy are typically degraded by signal-
dependent and signal-dependent, correlated noise, respec-
tively [4,5]. As a third dataset, we used the Berkeley Segmen-
tation Dataset (BSD) consisting of 500 manually segmented
images which we artificially corrupted with white, Gaussian
noise.

B..2 Parameter settings

We should note that, as opposed to TP and GB, SLIC is
provided with a compactness parameter m. SLIC uses an ad-
justed distance metric that is a weighted sum of spatial and
intensity distance. The parameter m assigns a relative im-
portance to these two. As a consequence, high values for
this parameter will enforce the superpixel boundaries to form
a Voronoi diagram, i.e. they become more compact. Noise,
however, typically causes artifacts on superpixel boundaries,
making them highly irregular (Figure 3). In order to preserve
compactness, we have to increase the compactness parame-
ter on noisy input data. The only question remaining is how
much m should be increased to get similar compactness. We
express the compactness of a superpixel S′ ⊂ S of a super-
pixel segmentation S quantitatively in terms of stockiness(

4×π×Area(S′)
Perimeter(S′)2

)
where Area(S′) and Perimeter(S′) denote the

area and perimeter induced by the set of superpixel boundary
pixels S′. Superpixels having stockiness equal to 1 correspond
to perfectly circular shaped and therefore compact superpix-



Fig. 4: Mean SLIC superpixel stockiness for variable m on noisy
data (blue) and the mean stockiness of superpixels computed on

noisefree data where m = 60 (red).

els, whereas low stockiness indicates non-compactness.
Figure 4 illustrates the impact of the parameter m on su-

perpixel stockiness in a noisy image. The noisy image used
in Figure 3 was employed for this purpose. The red line cor-
responds with the mean stockiness of superpixel segments on
the original image (i.e. the left part of Figure 3), where the
compactness parameter was set to 60. The blue line indicates
the mean stockiness of superpixels when computed on noisy
data for various values of m. The intersection of the lines indi-
cates how the compactness parameter should be set, in order
to get similar stockiness (or — implicitely — compactness)
on noisy and noisefree images. This way, based on a limited
training set of images from all three datasets, we determined
the value for m whenever we are computing SLIC superpixels
on noisy data.

B..3 Superpixel quality with noisy and denoised data

We wish to evaluate superpixel quality with noisy and de-
noised input data. In practice, most superpixel algorithms ig-
nore the presence of noise in images. As a consequence, it is
expected that several techniques might not be noise-robust
and require a denoising step in advance. For this, we de-
noised FM and SEM images using the NLMS-SC algorithm
and compared SLIC, TP and GB superpixel quality between
noisy and denoised data.

Rows one through four in Figure 5 illustrate superpix-
els on noisy SEM, denoised SEM, noisy FM and denoised
FM data, respectively. Rows five and six illustrate the im-
pact of white Gaussian noise (σ = 20) on an image taken
from the BSD dataset1. Notice we are considering three types

1For visualizations purposes, only crops of the results are shown. A
more extensive visualization can be found at http://telin.ugent.
be/˜jbroels/medicon_2016/

SLIC TP GB

Fig. 5: SLIC, TP and GB superpixels (red) in noisy and denoised
images. Rows one and two illustrate superpixel quality on noisy

and denoised SEM data, respectively. Rows three and four illustrate
superpixel quality on noisy and denoised FM data, respectively.

Rows five and six illustrate superpixel quality on noisy and
denoised BSD images, respectively. Groundtruth segmentation

borders are annotated in green, overlapping boundaries in yellow.

of noise: correlated, signal-dependent in case of EM, signal-
dependent in case of FM and white Gaussian noise in case of
BSD. Superpixels should preserve boundary information as

http://telin.ugent.be/~jbroels/medicon_2016/
http://telin.ugent.be/~jbroels/medicon_2016/
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(c) BSD (σ = 5)
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(d) BSD (σ = 25)
Fig. 6: Hausdorff distance distributions for superpixel

segmentations computed on noisy and denoised versions of the (a)
EM, (b) FM and (c-d) BSD dataset. For the BSD dataset, we

artificially added white, Gaussian noise with standard deviation (c)
σ = 5 and (d) σ = 25.

much as possible. In order to preserve stockiness, superpix-
els are forced to a more compact shape, leading to inaccurate
boundary preservation. After a denoising step, a lower com-
pactness parameter value will result in more shape variabil-
ity and more accurate boundary preservation. This is clearly
noticeable throughout all the SLIC results. The compactness
constraint in TP is stronger, leading to more robustness to
noise. Nevertheless, boundary information is better preserved
in denoised data. The GB algorithm provides non-compact
superpixels. Especially in the noisy data this results in highly
irregular superpixel shapes, sizes and leaking. However, in
the denoised data this seems to be less apparent. Denoising
improves superpixel quality significantly, especially because
there are much less superpixels leaking through groundtruth
borders.

Figure 6 shows a quantitative evaluation of our ex-
periments. For each dataset and superpixel technique, the
proposed distance (Equation 1) between each groundtruth
boundary pixel and superpixel segmentation was computed
for each image in the dataset. For each image in the dataset,
these distances are merged and shown in a histogram. Fig-
ure 6 visualizes this histogram for each dataset (both noisy
and denoised) and superpixel method. Because the BSD
dataset images originally are not inflicted by any significant
amount of noise, we artificially added white, Gaussian noise

of both low and high variance. A general remark is that the
histograms of the denoised data are more skewed towards
zero compared to the histograms of the noisy data. In other
words, denoising improves superpixel segmentation in terms
of boundary preservation. For SLIC and GB there are sig-
nificantly more groundtruth boundary pixels within a small
distance of a superpixel boundary pixel and significantly less
that have no superpixel boundary pixel in their vicinity. This
is much less the case with TP. Figure 5 confirms this, as the
difference between superpixels on noisy and denoised data is
less significant, compared to SLIC and GB. We also notice
that denoising becomes more important for higher amounts
of noise, since the histograms corresponding to the denoised
data are significantly more skewed towards zero in Figure 6d
compared to the corresponding histograms in Figure 6c.

The histograms in Figure 6 illustrate the general impor-
tance of denoising when generating superpixels on noisy
data. However, it is still possible that some superpixels have
been shifted towards groundtruth boundary pixels, and other
have neglected boundary preservation (due to e.g. edges be-
ing blurred by the denoising procedure). To take this into ac-
count, we compute the relative improvement rg of the corre-
sponding distances with and without a denoising step:

rg =
d(g,Snoise)

d(g,Sdenoised)
−1, (2)

where g ∈ G is a groundtruth boundary pixel and Snoise and
Sdenoised correspond to superpixel segmentations on noisy
and denoised data, respectively. Note rg can also be nega-
tive: in this case denoising increases the distance and has a
negative impact on boundary preservation. Figure 7 shows
the relative distance improvement histograms for the same
datasets as in Figure 6. We should note that for these his-
tograms only those g ∈ G were taken into account such that
d(g,Snoise) > 2, since we experienced that for these pixels
typically d(g,Sdenoised)≤ 3 and relative improvements would
not be very informative (whether d(g,Sdenoised) is 0, 1 or 2,
in practice this is within manual precision). Secondly, the his-
tograms are saturated at 4, meaning these groundtruth bound-
ary pixels correspond to higher values than 4. Most of these
values are ∞ because the corresponding groundtruth bound-
ary pixels become perfectly detected (d(g,Sdenoised) = 0 in
Equation 2). In every dataset, we notice a negligible amount
of negative relative improvements, compared to the positive
ones. In other words, denoising improves boundary preserva-
tion significantly and only a negligible amount of groundtruth
boundary pixels suffer from denoising and become less accu-
rately detected by the superpixel algorithm.
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Fig. 7: Relative distance improvement histograms for the same
datasets as in Figure 6. The amount of groundtruth boundary pixels
having a negative relative improvement is negligible compared to

the positive ones.

IV. CONCLUSION

Superpixel algorithms are an essential step in making
large amounts of data more tractable for computationally in-
tensive computer vision algorithms and become indispens-
able in high-throughput biomedical imaging processes. How-
ever, noise causes quality issues for state-of-the-art super-
pixel techniques such as SLIC, TP and GB. We validated
that denoising in advance and parameter adjustment improves
superpixel boundary preservation (visually as well as quan-
titatively). We established significant quality improvements
for SLIC and GB, whereas for TP this improvement is more
subtle due to its stronger compactness constraint. Both SLIC
and GB produce the most boundary preserving superpixels.
Whether to use SLIC or GB is largly depending on the appli-
cation and the necessity for compact or non-compact super-
pixels.
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