Fixed versus random effects models for fMRI meta-analysis

Han Bossier^a, Ruth Seurinck^a & Beatrijs Moerkerke^a

^aDepartment of data analysis, Ghent University Han.Bossier@Ugent.be

1. Detecting brain activation using fMRI

- Functional magnetic resonance imaging (fMRI) enables to detect brain regions that become activated during specific cognitive tasks such as reading or solving equations.
- The number of fMRI studies on different cognitive functions has increased substantially. However:
 - Sample sizes are typically small
 - **Reproducibility** is often limited
- Meta-analysis is promising tool to achieve this goal.

Two studies with same research question, different results?

3. Goal of our study

We study the impact of (1) the way subjects are pooled within a study and (2) the meta-analysis method for pooling stud-

ies

on the false positive rate (FPR), power and spatial accuracy.

Consider a benchmark (B) representing an area of true brain activation - depicted by the white square in the figure below.

Understanding the brain functioning requires integration of data across studies and labs.

2. Aggregating within and over studies

- At study level, estimates for the degree of activation in each brain region need to be pooled over subjects.
- These pooled estimates are further investigated in a second level group analysis.
- Fixed pooling of subjects: second level is ordinary average of all first level estimates (no between subject variance).
- Mixed pooling of subjects: second level estimates are obtained within a full Bayesian framework with non-informative priors.

- A meta-analysis aggregates different studies.
- ALE meta-analysis^[1] investigates the consistency of the spatial location of activation peaks in the brain.
- ES-SDM^[2] is a random effects meta-analysis that averages effect sizes of activation peaks over studies and takes into account within and between study variance.
- A fixed effects meta-analysis proceeds as ES-SDM but only takes into account the within study variance.

- The blob represents the region of activation as detected by a meta-analysis (m).
- **Black**: false positives
- Gray: false negatives (i.e. lack of power)
- **Overlap** with benchmark (i.e. accuracy):

$$\frac{V_{m,B}}{V_m + V_B - V_{m,B}}$$

With V=voxels that are declared significant.

4. Method and design

- Real data from the Human Connectome Project^[3]:
 80 subjects scanned doing a language and math task.
- We create 8 studies with respectively 7, 8, 9, 10, 10, 11, 12 & 13 subjects by random subsampling (without replacement) from the total pool of subjects.
- Different methods for aggregating within and over studies are combined.
- Group analysis on all 80 subjects \Rightarrow benchmark.
- FPR, power and overlap are calculated on the result of each meta-analysis with the benchmark image.
- Subsampling is repeated 11 times.

5. Results

6. Conclusion

Overall, the power and overlap is highest and When FPR lowest for:

1. All meta-analyses based on pooling subjects through a mixed effects analysis.

st and When pooling subjects using fixed effects, the order from best to worst performance is:

Random effects meta-analysis
 Fixed effects meta-analysis

3. ALE meta-analysis

Depending on the way subjects are pooled within study, there is an effect on the level of aggregating studies.

In general we advise **not to use fixed effects pooling of subjects** unless for the purpose of pooling scanning sessions within subjects.

7. References

Acknowledgements: This work was carried out using the Stevin Supercomputer Infrastructure at Ghent University, provided by the Flemish Supercomputer Center, funded by Ghent University, the Hercules Foundation and the Flemish Government - department EWI.

- Eickhoff et al. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. *Human brain* mapping, 30(9):2907-26, September 2009.
- [2] Radua et al. A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European psychiatry : the journal of the Association of European Psychiatrists, 27(8):605–11, November 2012.
- [3] Van Essen et al. The WU-Minn Human Connectome Project: an overview. *NeuroImage*, 80:62–79, October 2013.