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A novel method for realistic DWI data generation 
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Diffusion Weighted Imaging (DWI) was introduced to explore the human connectome in vivo; although many fiber 
tractography (FT) algorithms exist, proving the effectiveness of their estimates is challenging. We present a biologically 
and physically realistic software phantom, with brain-like fibres configuration and images, fully tuneable in terms of 
‘simulated acquisition’ parameters: a realistic bench test for quantitative analyses of every DWI-related algorithm.  
High quality DW data was acquired from a healthy volunteer on a 3T scanner, using an 8-channel receiver head coil. 
Diffusion weightings of b = 0 and 2800 s/mm2 were applied in 5 and 75 directions, respectively. In addition, 5 b= 0 s/mm2 
images were acquired with reversed phase encoding, for the purpose of EPI correction. Other imaging parameters were: 
TR/TE: 9500/100 ms; voxel size: 2×2×2 mm3; matrix: 120×120; slices: 68; NEX: 1. A T1 image 
was also acquired, to aid identification of the different tissue types. 
Post-processing: DW images were corrected for motion and Eddy current distortions using the 
approach of Raffelt.1 To ensure a proper match between the T1 data and the DW data, all DW 
images were corrected for EPI distortions using FSLs ‘topup’.2 Four tissue types (cerebrospinal 
fluid (CSF)/cortical gray matter (CGM)/deep matter (DGM)/white matter (WM)) were 
segmented on the T1 image following a pipeline proposed by Smith.3 On the corrected data set, 
ACT3 was performed with iFOD2, resulting in a set of 5x107 streamlines with high anatomical 
plausibility, further reduced down to 5x106 streamlines using SIFT, 4 to improve correspondence 
with the DW data and account for seeding biases. The four tissue type segmentation maps S and 
the final tractogram were used as ground truth input for our phantom generation pipeline. MR 
images come from a linear combination of the excited-state protons signals, so our model has a linear relationship with S:5

 

the anatomical part of the signal ( , )  depending on the tissue  and the voxel 	 is calculated based on the IRSE 
sequence and combined via the coefficients	 ( , ) of S, and the same holds for the DW signal loss. The proposed 

attenuation model ( , )/ ( ) = ∑ ( , ) ∑ ( )( ) ( ( ), , )	 accounts for diffusion patterns 	 ( ( ), , ) 
coming from the ( ) fibres and the  tissues in . The models used are the state 
of the art in terms of accuracy 6. In this work, the acquisition parameters can be 
tuned: the MR parameters , , , the DWI  and the tissue intrinsic ones ( ), 
set according to a method of Panagiotaki,6 making the proposed technique flexible. 
We noticed FA maps in agreement with real data, and that a reduction in the 
resolution leads to realistic Gibbs effect (fig. 1). We performed FT according to 
our earlier method7 on two phantoms with b=2500 and b=1500 s/mm2 (respectively red and green, fig. 2): we can extract 
bundles whose arrangement is very complex and realistic. Small differences in connectomes exist and were expected. Our 
phantom show a good consistency with the inputs and with anatomical and WM structures observed in real data.  
The parameters ( ) could be re estimated from the newly released Human Connectome Project dataset. Further validation 
on the phantom is needed, to verify that the correct connectivity among ‘simulated brain regions’ is inferred. After 
introducing noise or artefact in the phantom, any image restoration or FT technique can be quantitatively validated. 
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Fig.1: FA image, phantom.  
Left:1x1x1mm3 resolution. 

Right: 2x2x2 mm3 resolution. 

 
Fig.2: FT, phantom: b=2500 and b=1500 s/mm2 
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