
Scalable User Data Management in Multi-Tenant
Cloud Environments

Pieter-Jan Maenhaut∗†, Hendrik Moens†, Veerle Ongenae∗ and Filip De Turck†
∗Ghent University, Faculty of Engineering and Architecture, Dept. of Industrial Technology and Construction

Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
†iMinds – INTEC, Ghent University, Dept. of Information Technology

Gaston Crommenlaan 8 bus 201, 9050 Ghent, Belgium
Email: pieterjan.maenhaut@intec.ugent.be

Abstract—The rise of cloud computing and its elastic, on-
demand resource provisioning introduces the need for a flex-
ible and scalable multi-tenant architecture. In a multi-tenant
application every tenant (client) makes use of shared application
instances, but each tenant typically has its own user data. The
shared application instance behaves like a private instance by
guaranteeing both data separation and performance separation
for every tenant. As the number of tenants increases, the
amount of data grows. A scalable solution for the storage is
needed, allowing tenant data to be divided over multiple database
instances, but taking into account performance isolation and
custom data assurance policies.

In this paper we introduce an abstraction layer for achieving
high scalability for the storage of tenant data. This layer uses
data allocation algorithms to determine an acceptable allocation
of tenant data to different databases. We describe a mathematical
model for the allocation of tenant data which can be optimized
using existing linear programming techniques, and introduce the
BDAA-n and FDAA, two algorithms that will find an optimal
allocation of data by iterating over the possible permutations.
The proposed solutions are evaluated based on their flexibility,
complexity and efficiency. The flexibility of the BDAA and FDAA
makes them easy to customize and extend to fit most scenarios,
but the algorithms will achieve best results for tenants with
a limited number of subtenants. Linear programming is an
alternative for tenants with a higher number of subtenants,
but the customizability of the algorithm for specific use cases
is limited due to the need for linear functions.

I. INTRODUCTION

In a multi-tenant architecture, a software application is
designed to virtually partition its data and configuration, and
each tenant works in a virtual application instance. Cloud
computing [1] is a technology that enables elastic, on-demand
resource provisioning. As the infrastructure provider usually
charges for the number of instances used, an optimal usage
of available resources is desired to reduce operating costs.
Adding multi-tenancy to the application reduces the operating
cost, but as the number of tenants grows, a scalable archi-
tecture for both the application and data is needed, with a
minimal impact on the performance by other tenants.

Custom policies can put additional constraints to the allo-
cation of tenant data in multi-tenant cloud applications. Such
policies can be used to meet legal and business data archival
requirements for both persistent data and records management.
Policies about data privacy, migration and retention need to be

supported by the data allocation algorithms, as these have a
direct impact on the possible reallocation of data.

In this paper, we focus on the scalability of the tenant data
in multi-tenant applications. This scalability can be achieved
using existing techniques such as partitioning and NoSQL
databases, but we will present a solution for allocating data to
separated database instances, taking into account performance
isolation and custom data assurance policies for each tenant.
In this paper we present a generic solution for scalable storage
independent of the underlying database system. By doing so,
applications that need a traditional SQL interface are also
supported.

The remainder of this paper is structured as follows. In
the next section we will discuss related work. Afterwards, in
Section III we will present our architecture. In Section IV we
will introduce data allocation algorithms and discuss possible
extensions. In Section V, we will evaluate our algorithms and
in Section VI we state our conclusions and discuss avenues
for future research.

II. RELATED WORK

The work presented in this paper is related to both scal-
able storage solutions and custom data policies. In previous
work [2], we presented a hierarchical method for organizing
tenants and storage of tenant data, and characterized the impact
on the performance in a theoretical way. Tenants and sub-
tenants can be logically structured using the tenant tree, and a
mapping can be made to the physical storage of the tenant
data. The theoretical analysis was verified by experiments
on different environments, using common relational SQL
databases. The outcome of this research is used in this paper
to build a scalable database layer. In other previous work [3],
[4] we have focused on customizability and performance
isolation of multi-tenant computational components of cloud
services. This paper extends the previous work by focusing
on the data storage components of applications rather than on
computational components.

Data assurance policies can be used to meet legal and
business data archival requirements for both persistent data
and records management. Compliance with regulatory policies
on data remains a key hurdle to cloud computing [5]. Jun
Li et al. [6] [7] propose a policy management service that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55693125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Data
Scalability
Layer

Datastore
Selection

Data Access
Control

Data
Elasticity

Database
Layer

SharedTenant 2,3 Tenant 4Tenant 1

...
Tenant X

Application

Fig. 1. Architecture of the data scalability layer and possible communication
with other layers.

offers scalable management of data assurance policies attached
to data objects stored in a cloud environment. With GEO-
DAC [8], the authors provide a policy framework that enables
the expression of both the service providers’ capabilities and
customers’ requirements, and enforcement of the agreed-upon
policies in service providers’ environments. The data assurance
policies described in their work add additional constraints
on the allocation of data and therefore the data allocation
algorithms presented in this paper need to be flexible enough
to support such policies.

III. ARCHITECTURE OVERVIEW

Most web applications today use databases for storing
persistent user data that can be logically grouped together as a
database layer in the application architecture. To achieve better
scalability of the database layer, we define the data scalability
layer between the data access layer and the databases, that
is responsible for load balancing and selecting the correct
database. By using this abstraction layer, the physical data
distribution of the underlying databases is hidden towards the
data access layer.

Figure 1 illustrates the architecture of the data scalability
layer. As most software architectures will have a clear distinc-
tion between the persistent storage and the application, it is
possible to add this extra layer in between. Three components
can be defined inside the data scalability layer:

• The Datastore Selection component is responsible for
selecting the correct database and locating the data in
one of the possible databases.

• The Data Access Control component will verify if the
current tenant user has the required permissions to read
and/or modify the selected data.

• The Data Elasticity component is responsible for achiev-
ing high scalability, by increasing and/or decreasing the
number of database instances and reallocation of tenant
data.

A. Data Elasticity Component

The data elasticity component is responsible for achieving
high scalability by allocating the required amount of resources,
in this case the number of database instances. This component
will evaluate the current load on the different instances, add or
remove additional instances and reallocate tenant data, taking
into account the different constraints such as data retention
policies. The data elasticity component makes use of data
allocation algorithms to evaluate the current load and to decide
if additional instances should be added or removed.

B. Database Layer

In the presented architecture, multiple database instances
exist and tenants (and subtenants) can either have a dedicated
instance or share an instance with other (sub)tenants. One
database instance is shared between all tenants. This instance
holds all general tenant information such as tenant specific
configuration parameters, feature configuration (if the multi-
tenant variability approach from [3] and [4] is used), billing
information and data assurance policies. For every tenant, a
representation of the current allocation of data is also stored.
The shared database instance shouldn’t become the bottleneck
of the application as the amount information in it is limited,
because only general information about the tenants is stored.

IV. DATA ALLOCATION ALGORITHMS

The goal of the data allocation algorithms is to determine
an allocation of tenant data to the different database instances
resulting in a minimal cost. This is one of the tasks of
the data elasticity component of the data scalability layer.
Because of this, a cost function is needed to evaluate a possible
allocation given certain metrics. The first metric is the number
of database instances as more instances will result in a higher
cost. The next metric is the average response time for each
tenant and for the whole system, which can be calculated using
the Equations introduced in [2]. Another useful metric is the
current load on the existing database instances.

All algorithms are designed to work for a single tenant and
its child nodes (two levels of the tenant tree described in [2]),
but in some scenarios the tenant tree might have more than two
levels. In this case, the algorithms can be executed multiple
times, starting at the leaf nodes of the tree (the lowest level)
and continuing towards the root. This concept is illustrated in
Figure 2, where the execution order is denoted by numbers.
In this example, the selected algorithm will be executed four
times.

A. Linear Programming Data Allocation Algorithm (LPDAA)

The data allocation algorithms determine the amount of
data for every node that needs to be moved to the parent
node, resulting in a minimal cost using the cost function
described earlier in this paper. This cost function together with
the possible ranges for the variables and additional bounds
describe a mathematical model which can be solved using
Linear Programming (LP) or Integer Linear Programming

.

A B C

A1 A2 A3

A1a A1b A3a A3b

C1 C21 2

3 4

Level 0

Level 1

Level 2

Level 3

Fig. 2. Using the data allocation algorithms with a tenant tree consisting of
more than two levels. In this example, the selected algorithm will be executed
four times. The order of algorithm invocations is shown using numbers.

0 1 0 0 1 1...

Subtenant 1
moves 1/3 of

data to parent

Subtenant 2
moves no

data to parent

Subtenant k
moves all

data to parent

(k x n) bits

Fig. 3. An example representation of a single permutation when using the
BDAA algorithm for n = 2 with k subtenants.

(ILP). We will refer to these algorithms as the Linear Program-
ming Data Allocation Algorithm (LPDAA) and the Integer
Linear Programming Data Allocation Algorithm (ILPDAA)
respectively.

B. Basic Data Allocation Algorithm (BDAA)

The Basic Data Allocation Algorithm (BDAA) algorithm
will find the best allocation of tenant data for a single tenant
with k subtenants by evaluating all possible allocations within
a defined search space. Each tenant with its subtenants will
have at least one database instance and there is a clear
separation of data belonging to different tenants. For a single
permutation, we will represent every subtenant by n bits.
Larger values for n will result in a larger search space. As a
result, a permutation will be represented using n×k bits with
a value between 0 and 2k×n. The value of the n bits denote the
percentage of data stored at the parent database. For example,
if we would use 2 bits for every subtenant, n = 2 and we
will refer to the algorithm as the BDAA-2. Figure 3 illustrates
the representation of a single example permutation using the
BDAA-2.

Custom policies such as data assurance policies might put
constrains on the possible allocation of tenant data. The BDAA
algorithm can be easily extended to support such policies by

marking permutations that are violating some of the defined
constraints as invalid. In the last step of the BDAA algorithm,
the valid permutation with minimal cost is returned.

C. Fast Data Allocation Algorithm (FDAA)

The complexity of the BDAA algorithm is mainly dependent
on the number of different permutations that have to be evalu-
ated. Although searching for the optimal allocation can happen
offline, large values of either k (the number of subtenants) or
n (the number of bits used to represent a single subtenant)
can rapidly make the algorithm unusable as it would take too
much time to evaluate all permutations. To reduce the number
of permutations, the Fast Data Allocation Algorithm (FDAA)
adds a pre-processing step in which some of the subtenants
are removed from the input. After this, the FDAA solves
the data allocation problem using the BDAA. The algorithm
also contains a post-processing step in which the removed
subtenants are re-added to the output.

V. EVALUATION RESULTS

A. Execution time of LPDAA and ILPDAA

The mathematical model described above was implemented
using the Java API of the IBM ILOG CPLEX Optimization
Studio [9] V12.4 for Linux x86-64. The results of the exper-
iments show that LPDAA tends to be faster as the ILPDAA.

B. Execution time of BDAA-n and FDAA

The BDAA-n and FDAA were implemented in Java and
executed on a Linux server with an Intel Core i7 CPU (2.80
GHz) with 8 GiB of memory. In order to calculate the aver-
age execution times every subtenant was assigned a random
distinct number of database records and this was repeated 50
times for every value of k (the number of subtenants). Figure 4
illustrates the measured average execution times for a single
tenant with an increasing number of subtenants. As the number
of subtenants increases, the probability increases that one or
more subtenants can be removed in the pre-processsing step
of the FDAA. As a result, the FDAA tends to have a lower
complexity than the BDAA-1.

C. Algorithm Comparison

To compare the different algorithms, all algorithms were
configured with the same constraints and bounds, and the same
cost function. In our simulations, the tenant and subtenants
were assigned an initial amount of data and each iteration the
amount of data for each tenant was slightly increased. Figure 5
illustrate the calculated cost of an experiment for the different
data allocation algorithms. Similar experiments were executed
with different iterations based on realistic scenarios, but these
experiments provided similar results.

As there are only small differences in the results, all
algorithms could be good candidates for the implementation of
the data elasticity component. However, there is a significant
difference between the flexibility of the different algorithms.
As custom policies add additional constraints on the allocation
of data, the data allocation algorithm should be flexible enough

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

E
x
e
cu

ti
o
n
 t

im
e
 (

m
s)

Number of subtenants

BDAA-1
FDAA

BDAA-2
BDAA-4

Fig. 4. A comparison of the average execution times of 50 experiments for
the BDAA and the FDAA with an increasing number of subtenants.

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

C
a
lc

u
la

te
d
 P

e
rm

u
ta

ti
o
n
 C

o
s
t

Iteration Number

BDAA-1
FDAA/BDAA-2

BDAA-4
LPDAA
ILPDAA

Fig. 5. The calculated cost of the optimal allocation for the different data
allocation algorithms over the different iterations. In this experiment, the
algorithms were configured to return the valid data allocation resulting in
a minimum average response time.

to support them. The BDAA and FDAA are very flexible,
as they are easy to extend and customize. Any cost function
can be used allowing the algorithm to support most scenarios.
The LPDAA and ILPDAA on the other hand are less flexible,
as they are depending on linear problems. This puts some
limitations to the cost function and constraints. The LPDAA
for example can not count the number of database instances,
which is needed for a useful cost function. The ILPDAA
also can not support all possible scenarios. Some extensions
will need additional decision variables, but this increases the
complexity of the model significantly.

VI. CONCLUSIONS

Scalable multi-tenant applications which will be hosted on
the cloud need a scalable architecture for both the application
and data. In this paper, we focused on the scalability of the
tenant data in such applications. We started with extending
the architecture of a typical application by adding the data
scalability layer and defined the most important components

inside this layer. The data elasticity component is the main
component responsible for achieving high availability of the
database layer by allocating tenant data to multiple database
instances. This component invokes data allocation algorithms
to find the optimal allocation of tenant data.

The goal of the data allocation algorithms is to find a pos-
sible allocation with minimal cost. The cost function can take
different metrics into account, such as the average response
time of the system and the number of database instances. The
BDAA tends to find an optimal allocation by enumerating
the possible permutations. The FDAA reduces the execution
time of the BDAA with an exponential factor by introducing
a pre-processing step. For tenants with a high numbers of
subtenants, linear programming techniques offer an alternative
for the FDAA algorithm by using a mathematical model.
The ILPDAA is preferred as it offers more possibilities, but
the customizability of the algorithm for specific use cases is
limited due to the need for linear functions. In scenarios where
performance isolation and support for custom data assurance
policies are essential, the FDAA should be used instead.

In future work, the model described in this paper will be
used to construct a flexible middleware for building multi-
tenant applications on the cloud. The goal of this middleware
layer is to allow developers to build multi-tenant applications
in a traditional way, whereas the middleware layer provides all
multi-tenant related functions such as scalability, performance
isolation and security in a transparent way.

REFERENCES

[1] M. Armbrust, R. Fox, Armandoand Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds : A Berkeley view of cloud computing,” University of
California at Berkley, Tech. Rep., 2009.

[2] P.-J. Maenhaut, H. Moens, M. Decat, J. Bogaert, B. Lagaisse, W. Joosen,
V. Ongenae, and F. D. Turck, “Characterizing the performance of tenant
data management in multi-tenant cloud authorization systems,” in Pro-
ceedings of the 14th Network Operations and Management Symposium
(NOMS2014), Krakow, Poland, may 2014.

[3] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. D.
Turck, “Feature placement algorithms for high-variability applications in
cloud environments,” in Proceedings of the 13th Network Operations and
Management Symposium (NOMS 2012), 2012, pp. 17–24.

[4] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. De
Turck, “Cost-effective feature placement of customizable multi-tenant ap-
plications in the cloud,” Journal of Network and Systems Managemement,
Feb. 2013.

[5] M. Henze, M. Grossfengels, M. Koprowski, and K. Wehrle, “Towards
data handling requirements-aware cloud computing,” in Cloud Comput-
ing Technology and Science (CloudCom), 2013 IEEE 5th International
Conference on, vol. 2, Dec 2013, pp. 266–269.

[6] J. Li, S. Singhal, R. Swaminathan, and A. Karp, “Managing data
retention policies at scale,” in Integrated Network Management (IM), 2011
IFIP/IEEE International Symposium on, 2011, pp. 57–64.

[7] ——, “Managing data retention policies at scale,” Network and Service
Management, IEEE Transactions on, vol. 9, no. 4, pp. 393–406, 2012.

[8] J. Li, B. Stephenson, H. Motahari-Nezhad, and S. Singhal, “GEODAC:
A data assurance policy specification and enforcement framework for
outsourced services,” Services Computing, IEEE Transactions on, vol. 4,
no. 4, pp. 340–354, 2011.

[9] IBM ILOG CPLEX Optimization Studio. [Online]. Available:
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

