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Abstract. Recent research in several fields such as Biotechnology and
Healthcare has uncovered a vast number of applications where 3D Elec-
tron Microscopy (EM) is useful. However, images produced by 3D EM
are in most cases severely degraded. These degradations arise due to a
multitude of reasons, e.g. the complex electronics in the system, magnetic
lens aberration, heating and motion stability, charging, etc. Although the
raw, degraded images are currently used for analysis, their usefulness is
limited because the degradations make visual distinction and automated
analysis of biological features very difficult. In this work, we give an anal-
ysis of noise, as one of the most important degradations in 3D EM imag-
ing. Next, we propose a Non-Local Means image restoration algorithm
that exploits the derived noise characteristics. The proposed algorithm
yields significant improvements compared to other state-of-the-art image
restoration algorithms.

1 Introduction

Microscopy has been a crucial subject within fields such as biological and medical
research. Where Light Microscopy (LM) is able to magnify up to a factor of
2.000, recent Electron Microscopes (EM) allow us to increase this factor up to
2.000.000. Therefore, it is possible to image biological samples up to nanometer
resolution.

However, acquired EM images are severely degraded with various artifacts
such as noise (Fig. 1), making it sometimes difficult for field experts to visually
distinct biological structures. Current methods used in EM for dealing with these
obstacles involve low-pass filtering techniques resulting into low-quality image
restorations. Further automated processing such as e.g. segmentation will, as a
consequence, become less accurate.

Image restoration requires a detailed description of the image artifacts. For
example, taking into account for noise correlation yields significant improvements
in several existing techniques [1], [2], [3], [4]. We will therefore perform an analysis
of EM noise, which is one of the most notable artifacts in EM images.

The derived noise characteristics will be used in a Non-Local Means (NLMS)
framework. NLMS [5] is a state-of-the-art denoising algorithm exploiting non-
local repetitive structures in images. In order to do this, it assumes white, Gaus-
sian noise in the corrupted image, an assumption which is not always satisfied.



2 Authors Suppressed Due to Excessive Length

Fig. 1. Noisy EM image

We will therefore extend this algorithm in order to remove correlated, signal-
dependent noise.

The structure of this paper is as follows: in Sect. 2, we will discuss the image
acquisition process and noise sources in 3D EM. Furthermore, a noise analysis
within degraded EM images is derived. Next, the proposed NLMS-based algo-
rithm will be discussed in Sect. 3. We evaluate the proposed algorithm in Sect. 4.
Finally, Sect. 5 recapitulates this paper.

2 EM image acquisition and degradation

Image artifacts such as noise are caused by a variety of sources: complex elec-
tronics, heating, signal amplification, etc. A study of how these artifacts are
introduced in the resulting EM images will allow us to suppress them more
effectively.

2.1 Image acquisition & noise sources

In general, two types of EM can be distinguished: Transmission and Scanning
EM (respectively TEM and SEM). Both types focus a beam of electrons (using
a magnetic lens system) on the specimen’s surface. The difference between TEM
and SEM lies in the type of detected electrons. Where TEM detects electrons
passing through the specimen, SEM detects backscattered electrons. In 3D SEM,
a diamond knife makes a next slice after every acquired image in order to capture
the next image. This way, a 3D stack of 2D images is obtained. This is called
serial block face (SBF) SEM. As the name specifies, SEM scans the image in a
grid, cell by cell1. Fig. 2 shows the workflow of this type of EM and the most
important noise sources it contains.

In order to suppress noise, we have to analyse its characteristics in EM images
[6], [7]. A detailed image degradation knowledge allows us to model them more

1 Not in the biological sense, but cells within the grid.
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Fig. 2. 3D SEM workflow and its image artifact sources: an electron gun repetitively
fires an electron beam at the surface of the specimen according to the scanning princi-
ple. Backscattered electrons are detected and transformed into a digital signal. When
a slice is completely imaged, the next slice is prepared to start imaging

accurate and therefore remove the noise more effectively, without destroying the
image content.

2.2 Noise model

An accurate noise model allows a more accurate estimate of the ideal image and
therefore a better restoration [1], [4], [8], [9]. We propose to model the noise by
means of four characteristics:

– Distribution: the noise distribution gives information about which noise val-
ues are expected to be least and most common. The variance of the distribu-
tion tells us how much the noise is varying within the image and is therefore
a good measure of how much the noise degrades the image.

– Stationarity: noise may be dependent of the spatial position within the im-
age. This type of noise is called non-stationary, whereas spatially indepen-
dent noise is called stationary.

– Spatial correlation: noise intensities may be mutually dependent. In this case,
certain patterns may be noticed in the noise signal. Spatially correlated noise
is referred to as colored noise, whereas spatially uncorrelated noise is called
white.

– Signal dependency: another possibility is that of a dependency between
the noise and the observed image intensity. In special cases, high intensity
(bright) regions are inflicted with more noise (i.e. noise with higher variance)
than low intensity (dark) regions. This type of noise is called Poisson noise.

The above mentioned characteristics will be used to form our proposed degra-
dation model:

y = x+HΣ(x)n , (1)

where x and y are MN -length vectors representing the ideal and observed M×N
image (in e.g. raster scanning order), respectively, n is a stochastic MN -length
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vector (assumed having mean 0 and covariance matrix I, where I is the identity
matrix) representing the noise,H is an MN×MN circulant matrix representing
the low-pass filter which correlates the noise andΣ(x) is an MN×MN diagonal
x-dependent matrix incorporating the noise signal dependency. The kth diagonal
element of Σ(x) expresses the standard deviation of the kth noise sample, given
a certain measured intensity (x)k.

There are several remarks to this model. First, we assume an additive noise
model with a signal-dependent adaptation whereas most models assume multi-
plicative, Poisson noise. This way, all the noise characteristics are clearly split in
the noise model given by Eq. (1): n, H and Σ(x) express the noise distribution,
correlation and signal dependency, respectively. Second, the signal dependency
matrix Σ(x) is assumed to be diagonal and therefore only assuming the noise
variance (not the covariance between noise intensities) to be signal-dependent.
In an additive model, the signal-dependent noise variance σ2(i) may be written
as [10]:

σ2(i) = αi+ σ2
0 , (2)

where i is the measured intensity and α and σ0 are parameters to be estimated.
Note that σ2

0 corresponds to the noise variance in absence of signal, α expresses
the significance of the signal dependency.

2.3 Noise analysis

An ideal denoising algorithm, following Eq. (1), should give x as output for
an observed image y. However, in practice an approximation x̂ is derived. An
analysis of the noise characteristics allows us to determine the parameters in
Eq. (1) more accurately and therefore allows a more qualitative estimation of x.

In order to analyse the noise, we need to separate the noise from the signal.
We made this possible by switching off the electron beam of the EM (x = 0):

y0 = HΣ(0)n . (3)

Given this kind of noise signal y0, we can observe the corresponding his-
togram (Fig. 3(a)). It is clearly a reasonable approximation to assume EM noise
to be Gaussian distributed: n ∼N (0, I).

In order to analyse spatial, statistical noise dependency, we computed the
noise standard deviation for a reference block and a number of shifted blocks
using the noise images given by Eq. (3). Non-stationary noise would reveal a
non-constant structure of these standard deviations for variable shifts. Fig. 3(b)
illustrates this experiment for horizontal shifts and a constant vertical position2.
It can be seen that the noise is stationary, since the different block standard
deviations differ at most 20 intensity units. This is negligible, compared to the
dynamic range of a typical EM image, which is several thousands of intensity
units wide.

2 2D shifts would complicate the visuality of the results, but yields similar results.
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(a) Noise histogram
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(b) Stationarity of the noise. The hori-
zontal shift expresses the relative hori-
zontal position of the observed block to
the reference block
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(c) Autocorrelation function of the noise
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(d) Signal dependency of the noise. The
values for σ2

0 and α from Eq. (2) can be
estimated by a linear least squares fit

Fig. 3. Noise characteristics

Another noise property is spatial correlation. To analyse this, we computed
the autocorrelation function (ACF) of the noise. The ACF of a signal is found
by applying a convolution between the signal and a mirrored version of itself.
For this reason, the noise ACF is ideal to find mutual dependencies between
noise samples. We obtain a horizontal correlation between neighbouring noise
samples (Fig. 3(c)). This is the reason why we find a horizontal striping effect in
the noisy EM images (Fig. 1). Because the ACF describes relative noise sample
correlation, we will normalise it (i.e. divide by the sum of its elements) to obtain
normalised a low-pass filter representing the noise correlation.

The analysed images given by Eq. (3), i.e. the images without any signal, do
not allow to study signal dependency. To solve this, we extracted several patches
yi with different expected intensity i (but approximately constant within every
patch). Next, the expected intensity is subtracted from the patch to obtain a
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noise signal:

y′
i = yi − i

= i− i+HΣ(i)n

= HΣ(i)n , (4)

where i is a constant NM -length vector with (i)k = i (for all k). The expected
intensity i is approximated as the mean patch intensity, since the additional
noise is assumed to be zero-mean.

In order to estimate signal dependency, several patches with an expected
constant intensity î are acquired. For each patch, the noise variance estimate
σ̂i

2 is computed. Plotting the points (̂i, σ̂i
2) would reveal a signal-(in)dependent

structure. This plot is shown in Fig. 3(d). Clearly, we can conclude that the noise
is signal-dependent, since an increase of 1000 intensity units leads to an increase
of 20.000 in noise variance. Given that the noise variance is of order 105, this is
a significant increase and may not be ignored.

3 Image restoration

Our proposed algorithm, based on the degradation model given by Eq. (1) and
parameter settings through the procedures in 2.3, will exploit the derived char-
acteristics of the noise in EM images. Furthermore, it is based on the Non-Local
Means (NLMS) algorithm, which was first proposed in [5]. It estimates a noise
free pixel by computing weighted averages of all the pixels. The effectiveness of
the algorithm lies in the choice of weights. Our framework will allow to use the
NLMS algorithm in the presence of signal-dependent, correlated noise.

3.1 Non-Local Means

The NLMS algorithm assumes white, Gaussian noise in the degradation model
(a simplified version of Eq. (1) where H = I and Σ(x) = σI):

y = x+ σn, (5)

where σ is a positive constant representing the noise standard deviation. In order
to obtain the restored pixelvalue (x̂)i, the NLMS algorithm computes a weighted
average of all pixels:

(x̂)i =

∑MN−1
j=0 wij(y)j∑MN−1

j=0 wij

. (6)

The essential idea behind NLMS is the proposed definition for the weights wij .
Similar regions corresponding to the pixels at position i and j will receive a
relative large weight wij , non-similar regions will lead to smaller weights. In [8],
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the so-called modified bisquare weights have proven to be very effective:

wij =


(

1− ‖yNi
−yNj‖

2

h2

)8 (∥∥yNi
− yNj

∥∥ ≤ h, i 6= j
)

0
(∥∥yNi

− yNj

∥∥ > h, i 6= j
)

1 (i = j) .

(7)

We will use these weights in the following sections.

3.2 Proposed denoising algorithm: NLMS-SC

In order to improve the original NLMS algorithm, our proposed method will
apply a pre-whitening step, which will decorrelate the noise term. To do so,
we observe the assumed noise model, given by Eq. (1). The correlation whithin
the noise is due to the matrix H, which filters the signal-dependent noise term
Σ(x)n. In the Fourier domain, this will correspond to a point-wise multiplica-

tion of their respective Fourier transforms H̃ and ˜Σ(x)n. In order to decorrelate
the noise term, we therefore apply the inverse operation to the observed image
in the Fourier domain:

(ỹ′)i =
(ỹ)i

max
(
ε,
(
H̃
)
i

) , (8)

where ε is a small, positive constant which takes care of the numerical instability
of the point-wise division. In a similar way, we apply a second pre-processing
step in order to make the noise signal-independent. The signal dependency is
due to the matrix Σ(x). Because this matrix is assumed diagonal, its influence
is nothing but a point-wise multiplication of its diagonal elements with the noise
term n. Therefore, we can transform the image3 given by Eq. (8) into a signal-
independent version by point-wise dividing with the diagonal elements of Σ(x):

(y′′)i =
(y′)i

α(y′)i + σ0
, (9)

where α and σ0 are the parameters corresponding to the signal-dependency esti-
mation. Eqs. (8) and (9) will make sure the spectrum of the noise becomes flat,
i.e. the noise becomes decorrelated and signal-independent. Next, the weights
w′ij , given by Eq. (7), are determined, based on the transformed version y′′ in-
stead of y. Because y′′ is now an image, inflicted with ordinary, white noise,
these weights will be more effective for noise reduction. Similar as in NLMS,
we obtain the denoised image by Eq. (6) using the weights w′ij instead of wij

and the observed image y. We will refer to this NLMS variant as the NLMS-SC
algorithm.

3 This image is defined in the Fourier domain. The actual ‘signal independency trans-
formation’ is obviously applied on its inverse Fourier transform y′.
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4 Results and discussion

As an example, we have added signal-dependent, correlated noise, i.e. the same
type of noise that degrades SBF-SEM images, to the Barbara image (Fig. 4(a))
and various images of the Kodak dataset. The result in Fig. 4(e) shows a signif-
icant increase in PSNR and visual quality compared to the NLMS algorithm [5]
and state-of-the-art BM3D denoising method [11]. Both the NLMS and BM3D
results (respectively Fig. 4(c) and 4(d)) tend to reveal artifacts due to noise
correlation in flat areas. Because of the signal-independency assumption, bright
regions still contain noise, where as darker regions become more blurry. The
proposed NLMS-SC result shows none of these artifacts. This can especially be
seen in the cropped restoration results (Fig. 4(f), 4(g) and 4(h)).

The proposed algorithm is compared to several, frequently used, denoising
techniques. Anisotropic diffusion [12] filters a noisy image locally in horizontal
and vertical direction, depending on local edge information. Another type of
image restoration algorithm is a MAP estimator. We used a basic MAP estimator
assuming a Gaussian distributed image with mean x̄ and variance σ2

x (MAP-S).
Fig. 5 illustrates the effectiveness of the NLMS-SC algorithm in terms of PSNR
compared to the previously mentioned denoising algorithms.

We have also applied the NLMS variant to EM images. Fig. 4(j) illustrates
the significant improvement, compared to the original noisy version (Fig. 4(i)).
The EM images are both visualised within their intensity domain. Because of
the noisy pixel intensities, the degraded image therefore has less contrast. The
NLMS-SC algorithm manages to remove most of the noise in the degraded EM
image without losing valuable image information. Smaller structures whitin the
cell become clearer in the denoised image. Field experts have confirmed that the
restored EM images are more suitable for analysis than the acquired images.

5 Conclusion

Analysis of 3D EM images is a difficult task for researchers, because of the
significant amount of noise in the acquired images. Therefore, we propose an
effective image restoration algorithm. This algorithm should use all the charac-
teristics of EM noise in order to model accurately. For this reason, we performed
an analysis of the noise properties, that were exploited in an NLMS framework
(NLMS-SC). The NLMS-SC algorithm shows a significant improvement com-
pared to other state-of-the-art denoising algorithms, in terms of PSNR as well
as in visual quality.

For future work, we noticed EM images are not solely corrupted by noise.
Another relevant artifact is blur, caused by magnetic lens abberation. Further
deconvolution research will possibly yield even better restoration results.
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(a) Original image (b) Noisy image (21, 03 dB)

(c) NLMS restoration
(28, 86 dB)

(d) BM3D restoration
(29, 57 dB)

(e) Proposed NLMS-SC
restoration (29, 79 dB)

(f) NLMS restoration (crop) (g) BM3D restoration
(crop)

(h) Proposed NLMS-SC
restoration (crop)

(i) Original EM image (j) Proposed NLMS-SC restoration

Fig. 4. Noisy image restoration using NLMS [5], BM3D [11] and NLMS-SC
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