
CityFlow: OpenFlow City Experiment –

Linking Infrastructure and Applications

Adam Carter1, Donal Morris2, Sachin Sharma3, Luís Cordeiro4, Ricardo Figueiredo2, João Gonçalves4,

David Palma4, Nick Johnson1, Dimitri Staessens3

1EPCC, The University of Edinburgh, UK, 2RedZinc, Ireland,
3Ghent University – iMinds, Belgium, 4OneSource, Portugal

Email: 1{Adam.Carter, Nick.Johnson}@ed.ac.uk, 2{dmorris, ricardo}@redzinc.net
3{Sachin.Sharma, Dimitri.Staessens}@intec.ugent.be, 4{cordeiro, joagonca, palma}@onesource.pt,

Abstract— CityFlow is an EU FP7 project, aiming to

create a set of multi-autonomous-system OpenFlow

experiments on the OFELIA infrastructure to emulate

a city of one million inhabitants. In this demo, we

demonstrate all of the key components of the CityFlow

experimentation stack working together.

Keywords- Next generation networking, Quality of service,

Routing protocols, Soft switching

I. INTRODUCTION

In this demo, we present some results for an OpenFlow
Experiment to explore and OpenFlow control plane with a
large number of dynamic invocations. The CityFlow
project [1] has built an emulation of a control plane of a
city of one million inhabitants and defined a number of
networks within that city – so called “FlowVille”.

II. FLOWVILLE EMULATION

For FlowVille, we have analysed the network
infrastructure for Brussels, population 1.1 million, in order
to obtain a reference scenario, which can be emulated by
CityFlow on the OFELIA testbed in Ghent, the Virtual
Wall. Figure 1 shows the reference scenario, consisting of
3 users (for emulating one million end-users) in the access
network, 3 ring of OpenFlow switches in the aggregation
network, 1 ring in the core network, and 1 ring the CDN
network. All these rings form multiple autonomous system
scenarios for our experiments. For emulation, we assume
that each autonomous system is controlled by a single
controller.

Our experiment is based on an control plane stack
consisting of: (i) a Virtual Path Slice (VPS) engine [2]
which manages concatenating bandwidth slices in multiple
autonomous systems, (ii) FloodLight [3] which is an
openflow controller, (iii) RouteFlow [4] which is a
mechanism to integrate interdomain BGP forwarding
advertisements from adjacent autonomous systems into
OpenFlow rules, (iv) QueuePusher which is a mechanism
for installing queues on an Open vSwitch [5]
(v) OpenvSwitch, which is an OpenFlow softswitch. We
stimulate the control plane stack with high volume of
requests from a test harness which functions as a pulse
generator sending requests to the northbound API of the
VPS engine. The stack is illustrated in Figure 2.

Figure 1. FlowVille emulation experiment on the OFELIA testbed

In the demo we show the pulse arrival, processing
interval of a system event and the volume of connection
arrivals. Our purpose is to maximise the busy hour
capacity of the system for arriving connection
establishment events.

The results that we will demo directly will show the
full experiment stack set up and running on a test bed on
the site of one of our project partners (RedZinc). This test
bed has also been used to undertake experiments with
other OFELIA islands. A screenshot taken from one of the
demo applications is shown in Figure 3. This display is
presented in a web browser window and shows the current
performance of the system in real time.

Figure 2. Emulation framework and software stack

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55693106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We will also summarise our results from a series of
experiments that aim to:

1. Undertake a system test and demonstrate Virtual Path

Slice Signalling and OpenFlow interworking

2. Undertake a stress test of the stack using the large-

scale deployment on the Virtual Wall at iMinds

3. Understand the response to failures in the system,

both in the network and in the VPS engine itself.

4. Explore how the components of the stack operate

when deployed across multiple OFELIA islands, to

learn about real-world deployment issues.

Figure 3. A screenshot from the demo showing results from a control

plane stressing experiment in real time

III. KEY FINDINGS

From the system test experiments we learned that using
the stack that we had integrated, the VPS bandwidth
guarantee could be set-up across multiple domains. We
conclude that it is possible to integrate the following
OpenFlow technologies in a combined stack: Floodlight
for OpenFlow switch control; RouteFlow for propagation
of routes between different autonomous systems using
IPv4 and BGP; Open vSwitch; Virtual Path Slice Engine, a
multi provider signalling system for coordinating
bandwidth slices between different autonomous systems
and a Queue Pusher module for realising slicing in the data
plane of the Open vSwitch using rates applied to the
queues for a particular DiffServ code point.

We could conclude that the East-West aspect of the
data plane giving end-to-end connectivity over a mixed IP
and multi-autonomous OpenFlow network is operational.
In addition we concluded that the North-South aspect of
the control plane communicating from the application
layer (as manifested by the pulse generator) to the queue in
the data plane is functional.

From the stress test experiments we conclude that the
VPS Engine can scale to a high volume of flow
invocations and terminations, to support a busy hour flow
invocation capacity of 75000 events on mid range servers.
This aligns with what might be expected in an OpenFlow

area. We observed that we conclude that Floodlight suffers
from bottlenecks in the flow installation process, which
should be resolved for a high performance environment.
We conclude that the VPS Engine can slice bandwidth in

an integrated OpenFlow environment and coordinate that

between multiple autonomous systems (e.g. CDN network

to a customer’s access network).

From the response to failure experiment we learned that

high quality of service can be achieved for business

customers even on failure conditions using our

framework [6]. We learned that if the enough bandwidth

is present in the restoration path, neither business

customers nor best-effort customers would receive

degraded service. In addition, if there is a limited

bandwidth available in the restoration path, the best-effort

customers will first receive the degraded service. The

business customers only receive the degraded service

when there is no enough bandwidth available in the

restoration path to accommodate all the business

customers’ traffic. In this scenario, there will not be any

interference between the business customers and best-

effort customers.

From the multi-island experiment we conclude that the

OFELIA test bed can support multiple islands conducting
experiments. In our experiment we used the OFELIA
Virtual Wall segment at high scale and multiple OFELIA
islands at low scale to validate interoperability. A
signalling experiment can be conducted on mixed OFELIA
OpenFlow islands and external OpenFlow islands.

ACKNOWLEDGMENT

This work has received funding from the EU FP7
under agreement number 317576 (CityFlow).

REFERENCES

[1] CityFlow: www.cityflow.eu

[2] T. Braun, Diaz, M., Gabeiras, J.E., Staub, End-to-End Quality of
Service Over Heterogeneous Networks, Springer, 2008

[3] Floodlight Controller: http://www.projectfloodlight.org/floodlight

[4] Esteve Rothenberg et al. Revisiting Routing Control Platforms with
the Eyes and Muscles of Software-Defined Networking, HotSDN,
2012.

[5] Open vSwitch: www.openvswitch.org

[6] S. Sharma, D. Staessens, D. Colle, D. Palma, J. Goncalves, M.
Pickavet, L. Cordeiro, and P. Demeester, Demonstrating Resilient
Quality of Service in Software Defined Networking, IEEE
INFOCOM, pp. 133-134, 2014

