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Abstract: The Organic Rankine Cycle (ORC) technology has become very popular, as it is
extremely suitable for waste heat recovery from low-grade heat sources. As the ORC system
is a strongly coupled nonlinear multiple-input multiple-output (MIMO) process, conventional
control strategies (e.g. PID) may not achieve satisfactory results. In this contribution our focus
is on the accurate regulation of the superheating, in order to increase the efficiency of the
cycle and to avoid the formation of liquid droplets that could damage the expander. To this
end, a multivariable Model Predictive Control (MPC) strategy is proposed, its performance is
compared to the one of PI controllers for the case of variable waste-heat source profiles.
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1. INTRODUCTION

In recent years several studies have underlined the poten-
tial of low-grade heat recovery to reduce the amount of
world-wide industrial energy consumption (IEA [2010]).
The highly fluctuating nature of the heat source (temper-
ature and mass flow) makes Waste Heat Recovery (WHR)
applications a challenging task. Among the proposed so-
lutions, Organic Rankine Cycle (ORC) systems stand out
for their reliability and cost-effectiveness (Verneau [1979],
Angelino et al. [1984]).The working principle is the same
as a traditional steam Rankine cycle with the difference
that water is replaced with an organic compound.

The studies on waste heat recovery ORC systems have
been mainly focused on working fluid selection (Desai and
Bandyopadhyay. [2009]), and system optimization (Sun
and Li. [2011]). In the waste heat recovery context the
ORC system undergoes fast transitions from nominal op-
erating point to different off-design conditions, thus the
development of a good control strategy in order to ensure
optimal operation represents a challenging problem. Dy-
namic modeling is an important tool, necessary to analyze
system dynamics and to test control strategies during
transient and/or on-off conditions. Dynamic modeling of
power plant has been studied in the last years, for energy
conversion units (Colonna and Van Putten. [2007]), as well
as for ORC systems (Casella et al. [2013]).

As far as safe operation is concerned, an accurate regula-
tion of the superheating represents an important task for
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the controller. The regulator has to guarantee a minimum
value of superheating in order to maximize the efficiency,
and avoid the formation of liquid droplets at expander inlet
that can damage the expansion machine (Wei et al. [2007]).
In order to maximize the output power the evaporating
pressure represents the most relevant controlled variable
(Quoilin et al. [2011]). The main control objectives on
control of Organic Rankine Cycles are then twofold: 1)
Keep the cycle in a safe condition during operation and 2)
maximize the net output power.

In (Quoilin et al. [2011]) three different decentralized con-
trol strategies based on PI controllers for varying heat
source profiles are proposed, underlying that the best
results are obtained with an evaporating temperature
regulation based on a steady-state optimization. As the
ORC power unit is a strongly coupled nonlinear multiple-
input multiple-output (MIMO) system, conventional de-
centralized control strategies (e.g. PID) may not achieve
satisfactory results. For this reason up to date work is
related to the use of advance multivariable controllers.
A Linear Quadratic Regulator (LQR) was implemented
in (Zhang et al. [2012]), the controller exhibits a good
tracking response to setpoint changes.

More recent developments include the use of advanced
control strategies such as Model Predictive Control to
improve the control of the ORC power unit. MPC is a
general designation for controllers that make explicit use
of a model of the plant to obtain an optimal control se-
quence by minimizing an objective function over a defined
prediction horizon. In MPC only the first value of the
calculated control signal is applied to the system, then
the entire procedure is repeated the next sampling time
i.e. ‘receding horizon principle’. In (Hou et al. [2011]) a
supervisory predictive control is applied, in (Changenet
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et al. [2008], Lemort et al. [2011]) a Predictive Functional
Control (PFC) is tested for controlling the evaporator su-
perheat. In (Zhang et al. [2013]) the ability of a generalized
predictive control (GPC) to track a reference and to reject
disturbances is tested. Both studies are restricted to evalu-
ate the tracking capabilities of the different multivariable
controllers only in the case of step disturbances and no
attention is paid to the performance of the power unit.

In this study the Extended Prediction Self-Adaptive Con-
trol (EPSAC) approach to MPC for MIMO systems (De
Keyser [2003]) is implemented to increase the cycle ef-
ficiency by accurately regulating the superheating and
evaporating temperature, of an ORC unit for WHR ap-
plication. The proposed strategy is compared to a more
traditional approach based on decentralized PI control.

The paper is structured as follows: in section 2 the archi-
tecture and main characteristics of the ORC system used
in this study is presented. Next, in section 3 the EPSAC
methodology is briefly described. The control design of the
multivariable MPC as well as the decentralized PI strategy
is described in section 4, followed by the simulation results
in section 5. Finally a conclusion section summarizes the
main outcome of this contribution.

2. SYSTEM DESCRIPTION

This section describes the architecture and the main char-
acteristics of the ORC system model used for evaluating
the performance of the developed control strategy.

2.1 The Organic Rankine Cycle System

A schematic layout of the ORC system is presented in
Fig. 1.

Fig. 1. Schematic layout of the setup from the Dymola
GUI

The system model considered in this study is based on the
pilot plant size available at the Howest college in Kortrijk
(Belgium). The system has a nominal power of 6.5 kWe
and it is based on a regenerative cycle. The expander is
originally a single screw compressor adapted to run in
expander mode. For simulation purposes the refrigerant

R245fa is selected as working fluid whilst the pilot plant
works with solkatherm.

Referring to the left side of figure 1, it is possible to
recognize the liquid receiver installed at the outlet of the
condenser (a), where the fluid is collected in saturated
liquid condition (f). From the receiver outlet (a), the fluid
is pumped through the regenerator cold side (a’), and the
evaporator (b), where it is heated up to superheated vapor,
reaching its maximum temperature Tc at the evaporator
outlet (c). The fluid, after being expanded in the volumet-
ric machine, enters the regenerator hot side (d), and then
it flows into the condenser (e).

As discussed above a minimum amount of superheating at
expander inlet is required to mantain safe operation. The
superheating is defined as:

∆Texp,ev = Texp,su − Tev (1)

where Texp,su is the temperature measured at the inlet of
the expander and Tev, the evaporating temperature, corre-
sponding to the temperature at which the fluid undergoes
the phase transition from saturated liquid to saturated
vapor at the fixed evaporating pressure Pev.

Tev = f(Pev) (2)

where f corresponds to a function that correlates the
pressure for the refrigerant R245FA (Quoilin et al. [2011]).

The main terms to assess the performance of the ORC
system are the net output power and the cycle efficiency
which are defined in equation (3) and (4) respectively.

Ẇel,net = Ẇexp − Ẇpump (3)

ηcycle =
Ẇel,net

Q̇in,ORC

(4)

where Ẇexp is the expander electrical power, Ẇpump is the

pump electrical power and Q̇in,ORC is the thermal power
supplied to the ORC system in the evaporator.

The optimal working conditions for an ORC system are
listed hereunder:

• The condensing pressure should be maintained as low
as possible.

• The superheating at evaporator outlet (c) has to be
maintained as low as possible.

• An optimization of the overall efficiency result in the
optimal evaporation temperature.

Two degrees of freedom are available to match these opti-
mal working conditions: the pump speed and the expander
speed (Quoilin et al. [2011]). This study focuses on the
application of two different control strategies to accurately
regulate the evaporating temperature and superheating by
acting on both degrees of freedom.

In order to assess the performance of the different devel-
oped control strategies a dynamic model of the ORC sys-
tem (Fig. 1) has been developed in the Modelica language
using existent components from the ThermoCycle library
(Quoilin et al. [2014]). The developed Modelica model is
then exported into Simulink/Matlab R© environment by
means of the Functional Mock-Up Interface (FMI) open
standard. In this study the FMI Toolbox provided by
Modelon R© was used to compile the dymola model in a
model exchange format.
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2.2 Low-order Model suitable for Prediction

The model required by MPC has been obtained based
on a parametric identification procedure. Four transfer
functions representing the system dynamics between the
inputs, pump (Np) and expander (Nexp) speed, and the
outputs, superheating (∆Texp,ev) and evaporating temper-
ature (Tev), were obtained around the nominal operating
conditions presented in table 1. In the pilot plant setup,
the speed in the pump (Np) and expander (Nexp) are
controlled by means of inverters, so that the user provide
the speed in revolutions per minute (rpm).

Table 1. Nominal operating conditions consid-
ered for the Identification Procedure

Parameter Description Value Unit

Np Pump rotational speed 1710 rpm
Nexp Expander rotational speed 2880 rpm
Tev Evaporating temperature 401 K

∆Texp,ev Superheating 15 K
Thf Temperature hot fluid 145 ◦C

Ṁhf Mass flow rate hot fluid 3 kg/s
Tcf Temperature cold fluid 20 ◦C

Ṁcf Mass flow rate cold fluid 4 kg/s

Ẇel,net Net output power 6.5 kW
ηcycle Cycle efficiency 6 %

The identification has been performed using a multisine
excitation signal and the prediction error method (pem)
(Ljung [2007]). The sampling time Ts = 5 s has been cho-
sen according to the fastest dynamics of the system. The
identified transfer function matrix in deviation variables is
presented in (5).[

∆Texp,ev(s)

Tev(s)

]
=

 −4.5036

(141.2s+ 1)

1.0351

(104.56s+ 1)
1.37

(134.2s+ 1)

−0.48

(54.14s+ 1)

[ Np(s)

Nexp(s)

]
(5)

The normalized root-mean-square error of each transfer
function to validation data was computed using (6):

fit = 100 ∗
(

1−
‖y − ŷ‖

‖y −mean(y)‖

)
(6)

where y is the validation data output and ŷ is the model
output given by the transfer function. Each transfer func-
tion gave a data fitting of about 80%

3. MULTIVARIABLE EPSAC METHOD

This section briefly summarizes the extension of the Ex-
tended Prediction Self-Adaptive Control (EPSAC) for
multivariable systems, following the ‘solidary’ approach
(De Keyser [2003]).

3.1 Principle of MIMO EPSAC

The analysis of the method is described considering the
case of a nu inputs and ny outputs. The following structure
of the generic process model is used:

yi(t) = xi(t) + ni(t), i = 1, 2, . . . , ny (7)

with yi(t) the measured process outputs, xi(t) the model
outputs and ni(t) the process/model disturbances (i.e.
modeling errors and noise); t denoting the discrete-time

Fig. 2. Process Model

index. A schematic representation is depicted in Fig. 2
where uj(t) represent the process inputs j = 1, . . . , nu.

The disturbance ni(t) includes all effects in the measured
output yi(t) which do not come from the model output
xi(t). This is a fictitious (and thus non-measurable) signal,
which can be modeled by a colored noise process:

ni(t) =
C(q−1)

D(q−1)
e(t) (8)

with e(t) white noise; C(q−1) and D(q−1) (monic polyno-
mials in the shift operator q).

An essential aspect in the MPC methodology consists of
the prediction of the process outputs, these are calculated
with:

yi(t+ k|t) = xi(t+ k|t) + ni(t+ k|t), i = 1, 2, . . . , ny (9)

for k = N1i, . . . , N2i where N1i and N2i are the minimum
and the maximum prediction horizons for each i-output of
the process. Our problem resides now on finding xi(t+k|t)
and ni(t+ k|t). The first multi-step prediction problem is
solved by recursion of the process model, while the second
is solved using filtering techniques on the disturbance
model. A detailed description is given in (De Keyser
[2003]).

The future response of the process is considered to be the
result of two effects:

yi(t+ k|t) = yibase(t+ k|t) + yiopt(t+ k|t), i = 1, 2, . . . , ny (10)

The two contributions have the following origins:
yibase(t+ k|t) :

• effect of past controls and of the basic future control
scenario, called ujbase(t+ k|t), for k = 0 . . . , Nuj − 1
(Nu being the control horizon), and for j = 1 . . . nu.
For linear systems the choice of this scenario is irrele-
vant, a simple choice being ujbase(t+ k|t) ≡ 0, k ≥ 0

• effect of future (predicted) disturbances ni(t+ k|t).
yiopt(t+ k|t) :

• effect of the optimizing future control actions: δuj(t+
k|t) = uj(t + k|t) − ujbase(t + k|t),k = 0 . . . Nu − 1.
Where uj(t + k|t) are the desired optimal control
actions. The effect of these additions is the discrete
time convolution of ∆Uj = {δuj(t|t), . . . , δuj(t+Nu−
1|t)} with the impulse response coefficients of the
system (G matrix).

In brief the key EPSAC-MPC equations for the MIMO
case (10), can be expressed in matrix notation:

Yi = YiBase + Yiopt = Yi +

nu∑
j=1

GijUj (11)

where for i = 1, 2, . . . , ny and j = 1, 2, . . . , nu:
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Yi = [yi(t+N1i|t) . . . yi(t+N2i|t)]T

Yi = [yibase(t+N1i|t) . . . yibase(t+N2i|t)]T

Uj = [δuj(t|t) . . . δuj(t+Nuj − 1|t)]T

Gij =


hijN1i

hijN1i−1 . . . gijN1i−Nuj+1

hijN1i+1 hijN1i
. . . . . .

. . . . . . . . . . . .

hijN2i
hijN2i−1 . . . gijN2i−Nuj+1


3.2 The Control Objective

Without affecting the generality of the problem a system
with 2 inputs and 2 outputs will be considered in the
next analysis. The objective is to find the optimal control
vectors ∆U∗

1 and ∆U∗
2 which minimize the cost function:

J =

N21∑
k=N11

[r1(t+k|t)−y1(t+k|t)]2 +

N22∑
k=N12

[r2(t+k|t)−y2(t+k|t)]2

(12)

subject to

∆ujmin ≤ ∆uj(t+ k|t) ≤ ∆ujmax ∀ k = 0, . . . , Nuj − 1

ujmin ≤ uj(t+ k|t) ≤ ujmax ∀ k = 0, . . . , Nuj − 1

where N2i is the prediction horizon; Nuj is the control
horizon; ri(t+ k|t) is the future reference sequence; u(t+
k|t) the optimal future control sequence; ∆uj(t+k|t) is the
incremental control action; yi(t+ k|t) is the k step ahead
prediction of the system output y(t) on data up to time t
for outputs i = 1, 2 and inputs j = 1, 2.

The desired reference trajectory ri(t+k|t), is chosen here as
a 1st-order reference trajectory as specific implementation
example:

ri(t+ k|t) = α ri(t+ k − 1|t) + (1− α)wi(t+ k|t) (13)

for k = 1 . . . N2 and initialization r(t|t) = y(t). The signal
w(t) represents the setpoint and α a design parameter that
plays an important role in tuning the MPC performance
(Sanchez and Rodellar. [1996]).

With this strategy the predicted control errors summed
over all process outputs are minimized. Notice that the
control error for a specific variable y1 can possibly and
deliberately be increased, with the purpose of reducing the
control error for another variable y2. The objective is thus
to minimize the total control error of all partners together,
and not just to minimize the individual control error of
each partner separately; hence, the choice for the name
solidary control.

The cost function (12) can be represented as a quadratic
cost index in ∆U , for which constraints can be taken
into account a priori, thus leading to the best solution
that is possible within the specified limits. Above problem
is a standard, well-known optimization problem called
quadratic programming (quadratic cost function with lin-
ear inequality constraints) (De Keyser [2003]).

4. CONTROLLER STRUCTURE AND TUNING

In this section the control structure and tuning procedure
of both the decentralized PI control strategy and the
proposed multivariable MPC is discussed.

4.1 Multivariable EPSAC design

The input uj(t) and slew rate ∆uj(t) constraints imposed
to the developed MPC are presented in table 2.

Table 2. Input Constraints of ORC system

Input Initial Value umax umin ∆umax

Np 1710 rpm 2910 rpm 510 rpm 120 rpm/s
Nexp 2880 rpm 3840 rpm 1920 rpm 120 rpm/s

In MPC, a balance between acceptable control effort and
acceptable control error can be obtained via many design
parameters (e.g. the reference trajectory design parameter
α; the prediction horizonN2 and the control horizon design
parameter Nu). Fast or slow responses can be obtained by
a low or high N2, respectively. The control horizon Nu is
used to structure the future control scenario, reducing the
degrees of freedom from N2 to Nu. Structuring leads to
simplified calculations and has generally a positive effect
on robustness. The design parameter α in the reference
trajectory can vary in the range of: 0 ≤ α ≤ 1. A value of
α closer to 1 means a smoother variation of the setpoint
and hence a less aggressive control action.

Several simulations have been performed varying the de-
sign parameters N2, Nu and α. A trade-off between
closed loop speed and robustness has been obtained for
{60, 1, 0.5}, respectively. The main goal is to achieve a
response without overshoot OS% = 0 and settling time
of about 300 s. Another important element in the design
of the controller is the choice of the disturbance model (8),

during this study the ‘default’ filter C(q−1)
D(q−1) = 1

1−q−1 has

been chosen leading to zero steady-state error.

The complete control scheme is depicted in Fig. 3, where
the blue blocks represent the proposed MPC strategy.

Fig. 3. Multivariable EPSAC control structure

4.2 Decentralized PI control design

Two PI controllers following a decentralized scheme
(Fig. 4) have been implemented as a reference to the
performance of the MPC. This approach has been chosen
since it represents the typical control strategy adopted for
ORC systems (Quoilin et al. [2011]).

Using the model (5) the two PI controllers were tuned
using the CAD tool FRTool in matlab (De Keyser and
Ionescu. [2006]), for the following specifications: settling
time of 300 s overshoot percent OS% = 0 and robustness
Ro = 0.7. The PI parameters obtained for superheating
∆Texp,ev are Kp = −0.4055, Ti = 73.6068 and the PI
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Fig. 4. Decentralized PI control structure

parameters to control the evaporating temperature Tev are
Kp = −0.9807, Ti = 17.4471.

4.3 Setpoint tracking experiment

As above mentioned the present study focuses on the
accurate regulation of the superheating ∆Texp,ev, where a
small amount of superheating represents a higher efficiency
(Wei et al. [2007]) and zero represents an undesired effect
(i.e. formation of liquid droplets that could damage the
expander).

In order to compare the MPC strategy with the more tra-
ditional PI, a tracking experiment is proposed as depicted
in Fig. 4.3. At time 1500 s the setpoint of superheating is
changed from 15 K to 13 K, the MPC controller exhibits a
better response with less oscillations and less interaction
in the other output (i.e. better decoupling effect than
the PI controller). Next, a change in the setpoint of the
evaporating temperature is made, from 401.2 K to 400.5 K,
both controllers present a settling time of about 400 s but
the PI strategy requires a minor control effort compared
to the MPC one.
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Fig. 5. Tracking performance of PIs ’continuous blue line’
and MIMO MPC ’dashed red line’

From this experiment some preliminary conclusions can
be drawn. As expected, the MPC strategy allows for a
good decoupling of the system since it is a multivariable
strategy, which ’knows’ by means of the model the ex-
pected interactions in the system. As far as robustness is
considered, both linear strategies lead to similar perfor-
mance after the change in the setpoint. The robustness
of the control strategies was considered by tuning a slow
decentralized PI controller and by selecting a large pre-
diction horizon N2 (to deal with modeling errors during
prediction). Finally, the MPC strategy presents a desired
response while respecting the input constraints imposed
by the actuators.

5. SIMULATION RESULTS

The experiment presented in this section consists in an-
alyzing which strategy is the best in terms of keeping
a high cycle efficiency and delivering the maximum net
output electrical power, in case of unsteady condition of
the thermal energy source (i.e. temperature and mass flow
rate variations).
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Fig. 6. Temperature and mass flow rate variations of the
heat source

The mass flow rate and temperature of the heat source
Mhf and Thf , respectively, are considered to be constant
during the first 1200 s; afterwards, small variations are
introduced from 1200 s to 2000 s, then larger variations are
introduced from 2000 s to 2500 s. Finally, the variations
are again diminished until the end of the experiment. The
obtained heat source profile is depicted in Fig. 6.

500 1000 1500 2000 2500 3000
10

12

14

16

18

20

T
em

pe
ra

tu
re

 (
K

)

 

 

500 1000 1500 2000 2500 3000

395

400

405
T

em
pe

ra
tu

re
 (

K
)

 

 

500 1000 1500 2000 2500 3000

1600

1700

1800

1900

Time (s)

R
ot

at
io

na
l S

pe
ed

 (
rp

m
)

 

 

500 1000 1500 2000 2500 3000
2000

2500

3000

3500

Time (s)

R
ot

at
io

na
l S

pe
ed

 (
rp

m
)

 

 

∆T PI ∆T MPC T
ev

 PI T
ev

 MPC

Np PI Np MPC Nexp PI Nexp MPC

Fig. 7. Disturbance rejection performance of PIs ’continu-
ous blue line’ and MIMO MPC ’dashed red line’

The results for both strategies are depicted in Fig. 7. An
important conclusion is that for a constant thermal energy
source profile both PI and MPC strategies are equivalent
in terms of performance as observed during the first 1200 s.
However, for a large variation in the variable heat source
profile (e.g. between 2000 s and 2500 s) the MPC strategy
shows a better perfomance than the PI controllers keeping
the superheating ∆Texp,ev closer to the setpoint, with
considerably less control effort (Fig. 7). As a consequence
the produced net electrical power and hence the thermal
cycle efficiency of the system, based on the MPC strategy,
results affected by smaller oscillations compared to the PI
controlled system as shown in Fig. 8.

Similar to the previous analysis, in Fig. 8 both strategies
deliver the same electrical power for small variations in
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the heat source profile; nevertheless, for large variations
the MPC strategy leads to a higher average efficiency and
consequently a higher average net electrical output power
with less control effort.
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Fig. 8. Electrical power produced and cycle efficiency.
For both decentralized PIs ’blue continuous line’ and
MIMO MPC ’dashed red line.’

6. CONCLUSION

In the present contribution the effectiveness of the pro-
posed Multivariable Predictive Control strategy has been
evaluated and compared to PI controllers. The results
obtained suggest that: 1) In case of stable thermal energy
source, classical control techniques (e.g. PID) gives similar
performance compared to more advanced strategies (e.g.
MPC). 2) In case of unsteady thermal energy source,
a characteristic of waste heat recovery applications, the
MPC allows to reach a higher net electrical output power,
by more accurately regulating the superheating, leading to
higher efficiency of the cycle compared to a traditional PI
strategy.

Future work include adding a degree of freedom by con-
trolling the condenser pressure by acting on the mass flow
rate and/or temperature of the heat sink, Mcf and Tcf
respectively. Development of more advanced control to
maximize the efficiency in off-design working conditions,
by optimizing the evaporating temperature are also under
investigation.
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