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Abstract—In this paper we illustrate a modeling framework
to analyze on-chip transmission lines affected by longitudinal
nonuniformities in their conductor edges. The method consists of
two steps. First, a macromodel for the frequency-dependent per-
unit-length parameters is constructed based on an accurate field
solver and it is used to conveniently obtain the pertinent place-
dependent line parameters. Second, a fast and accurate pertur-
bation technique is used to analyze the nonuniform transmission
line problem. As shown by the application example, the proposed
technique makes the statistical assessment for a large number
of edge profiles feasible. Numerical results and discussions are
provided for the case of an on-chip inverted embedded microstrip
line.

Index Terms—Edge roughness, nonuniform transmission lines,
on-chip interconnects, perturbation methods, statistical analysis.

I. INTRODUCTION

The increase of operating frequencies and the simultaneous
scaling of device dimensions are amplifying the impact of
size effects in on-chip interconnects, like skin effect and
conductor roughness, which require accurate modeling [1].
Specifically, as the cross-sectional interconnect dimensions are
reduced, a non-negligible impact of conductor edge rough-
ness is found on the electrical performance of on-chip and
nanoscale interconnects [2]–[4]. Line-edge roughness (LER) is
the longitudinal variation of the conductor edges and has many
sources, including mask roughness and statistical phenomena
like resist diffusion and chemical etching [5].

The effect of LER is inherently statistical and several
stochastic models are available for its description. They mainly
consists of either sinusoidal profiles [6]–[8] or correlated
Gaussian processes [9]–[11]. The aforementioned works assess
the impact of LER on the resistance and/or capacitance varia-
tions, and show a decreasing effect on longer interconnects due
to averaging. However, a comprehensive modeling framework,
accounting also for inductive effects and dielectric losses, and
enabling an efficient statistical analysis of the overall signal
integrity, seems yet to be missing.

The goal of this contribution is to cover this gap by putting
forward a robust simulation framework to account for random
longitudinal conductor edge variations in the interconnect
simulation. The methodology is based on the construction of a
macromodel for the resulting frequency- and place-dependent

per-unit-length (p.u.l.) parameters and on the application of
a perturbation technique for the analysis of the pertinent
nonuniform transmission line (NUTL) [12]. For the sake of
simplicity, in this contribution the discussion is limited to a
single signal line with a symmetric LER for its two edges. The
approach is validated via the analysis of an inverted embedded
microstrip (IEM) line in both the frequency and time domain.

II. EDGE ROUGHNESS MODELING
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Fig. 1. Top view of conductor profiles for different LER parameters: (a) low
σr and long ∆ℓ; (b) low σr and short ∆ℓ; (c) high σr and long ∆ℓ; (d)
high σr and short ∆ℓ. These parameters are illustrated on each plot.

The statistical properties of LER are usually described by
at least two relevant parameters [5]: the absolute standard
deviation σr of the conductor edge from its nominal cross-
sectional position, and the correlation length ∆ℓ along the
direction of propagation z. Fig. 1 visualizes four edge profiles
obtained with different combinations of the aforementioned
parameters. As shown by the figure, reducing the correlation
length results in the edge to be longitudinally rougher, whereas
the standard deviation affects the transverse variations. It
is possible to extract these parameters from real profiles,
measured with a scanning electron microscope [5].



As the geometry of the conductor is nonuniform along the
longitudinal coordinate z, an interconnect affected by LER
is in fact a NUTL and it is described by the following
Telegrapher’s equations [13]:

d

dz
V̂ (ω, z) = −Ẑ(ω, z)Î(ω, z) (1a)

d

dz
Î(ω, z) = −Ŷ (ω, z)V̂ (ω, z) (1b)

where V̂ and Î denote the phasors of the voltage and current
along the line, whereas Ẑ = R(ω, z) + jωL(ω, z) and
Ŷ = G(ω, z) + jωC(ω, z) are the frequency- and place-
dependent p.u.l. parameters, which are function of the conduc-
tor cross-sectional geometry at a given point along z. In the
sequel, the argument ω that explicitly expresses the frequency
dependency, will be dropped for notational brevity.

Two issues arise for the modeling of a transmission line with
LER via (1). First, no closed-form solution exists for (1). The
typical strategy for the determination of the voltage and current
is to subdivide the line into short and locally uniform sections
and to concatenate the respective chain-parameter matrices
(CPMs) [13]. This is here referred to as the “CPM approach”,
which turns out to be computationally inefficient as the number
of discretizations needed is usually high, especially for rapid
variations as those occurring in rougher edge profiles. Second,
the direct evaluation of the p.u.l. parameters in each section is
even more computationally demanding, as it requires accurate
field calculations [14].

These two problems are overcome by constructing a macro-
model for the p.u.l. parameters and by solving the NUTL equa-
tion via a perturbation technique, as shown in the following
sections.

A. Macromodel of the Per-Unit-Length Parameters

We define the LER profile as the longitudinal variation δ(z)
of the conductor edge from its nominal position. This is
modeled as a Gaussian random process with zero mean and
squared exponential autocorrelation function:

K(z, z′) = σ2
r exp

(
−|z − z′|2

2∆ℓ2

)
(2)

Moreover, we introduce the deviation normalized w.r.t. the
roughness standard deviation σr, i.e.

ξ = ξ(z) =
δ(z)

σr
(3)

It should be noted that with the introduced assumptions and
the above definitions, the actual conductor width at a given
position z is

w(z) = w̄ + 2δ(z) = w̄ + 2σrξ(z), (4)

where w̄ denotes the nominal width.
A macromodel is constructed for the p.u.l. parameters Ẑ

and Ŷ as a function of the normalized deviation ξ by means

of a Lagrange interpolation [15]:

Ẑ ≈
K∑

k=1

Ẑ(ξk)Φk(ξ) (5a)

Ŷ ≈
K∑

k=1

Ŷ (ξk)Φk(ξ) (5b)

where the coefficients Ẑ(ξk) and Ŷ (ξk) are the p.u.l. param-
eters calculated at the interpolation nodes {ξk}Kk=1 based on
the actual conductor width (4), whilst the functions Φk are the
corresponding Lagrange polynomials, i.e.

Φk(ξ) =
∏

1≤j≤K
j ̸=k

ξ − ξj
ξk − ξj

, k = 1, . . . ,K (6)

Owing to the Gaussian distribution of the edge variations,
we use as interpolation nodes the zeros of Hermite poly-
nomials [15]. A macromodel based on K = 6 interpolated
samples is constructed, resulting in an error less than 0.2%
over the interval [−3σr,+3σr] and 1.7% over the interval
[−4σr,+4σr], up to a frequency of 100 GHz. It is important
to point out that a single calculation of Ẑ and Ŷ requires about
5 min. Therefore, it is virtually impossible to directly calculate
many place-dependent p.u.l. parameters along the entire line
length, as would be needed in a brute-force analysis. Yet, once
the macromodel is available, it suffices to generate a suitable
LER profile δ(z) and sample (5) to inexpensively obtain them.

B. Perturbation Technique for the Nonuniform Transmission
Line

The problem of solving a NUTL like (1) is converted into
the solution of a uniform transmission line with distributed
sources by means of the perturbation technique described
in [12]. The place-dependent Ẑ and Ŷ are interpreted as a
perturbation w.r.t. a reference value, corresponding to their
average along z:

Ẑ(z) = Ẑ0 +∆Ẑ(z) =
1

ℓ

∫ ℓ

0

Ẑ(z)dz +∆Ẑ(z) (7a)

Ŷ (z) = Ŷ0 +∆Ŷ (z) =
1

ℓ

∫ ℓ

0

Ŷ (z)dz +∆Ŷ (z) (7b)

A second-order perturbation is introduced for the voltage
and current along the line, i.e.

V̂ (z) ≈ V̂0(z) + V̂1(z) + V̂2(z) (8a)

Î(z) ≈ Î0(z) + Î1(z) + Î2(z) (8b)

where V̂0 and Î0 are the solution of the uniform “unperturbed”
line

d

dz
V̂0(z) = −Ẑ0Î0(z) (9a)

d

dz
Î0(z) = −Ŷ0V̂0(z) (9b)



whilst V̂i and Îi, i = 1, 2, are the solutions of

d

dz
V̂i(z) = −Ẑ0Îi(z)−∆Ẑ(z)Îi−1(z) (10a)

d

dz
Îi(z) = −Ŷ0V̂i(z)−∆Ŷ (z)V̂i−1(z) (10b)

where the additional terms on the right-hand side play the
role of distributed sources [13]. Closed-form expressions are
available for V̂i and Îi [12].

III. APPLICATION EXAMPLE

The proposed application example refers to the IEM line
shown in Fig. 2, where all the relevant geometrical and
material parameters are indicated. It consists of an aluminum
signal conductor embedded in a silicon dioxide layer on a
silicon substrate, and with an aluminum ground plane on top.
The displayed width of 2 µm is the desired nominal width w̄.
The line is 1-mm long.

For the sake of simplicity, a solid ground plane is consid-
ered, although mesh-type grounds are often adopted for on-
chip lines [16]–[18]. By assuming a periodic structure for the
mesh, this case can be treated in a similar fashion as fiber
weave structures in [19].
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Fig. 2. Cross-section of the IEM line for the considered application example.

A. Frequency-Domain Analysis

A frequency-domain analysis is carried out first. To sta-
tistically assess the impact of LER, 1000 random profiles are
generated by considering σr = 0.1 µm and ∆ℓ = 5 µm. Fig. 3
shows the magnitude and phase of the corresponding S11

(solid gray lines), thus illustrating the spread of the response
due to LER. The S-parameters are obtained from the total
voltage and current (8) at the line ends (z = 0 and z = ℓ),
calculated for 50-Ω terminations [20]. The components V0,1,2

and I0,1,2 are determined using the formulas in [12].
Furthermore, the 99% bounds, obtained from the cumulative

distribution function of the samples, are also indicated in Fig. 3
(solid black lines). For comparison, the bounds computed by
solving the NUTL (1) with the CPM approach are also shown
(dashed gray lines). The two results are indistinguishable.
Nonetheless, the repeated solution with the CPM method takes

6515 s on an ASUS U30S laptop with an Intel(R) Core(TM)
i3-2330M, CPU running at 2.20 GHz and 4 GB of RAM, as
opposed to the 409 s required by the perturbation technique.
Therefore, a relevant speed-up of 16× is achieved by adopting
the latter.
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Fig. 3. Magnitude and phase of S11 for the 1-mm long IEM line of Fig. 2.
The solid gray lines show the spread of the response due to LER; the solid
black and the dashed gray lines highlight the ±3σ bounds obtained by using
the perturbation technique and the CPM approach, respectively.

B. Time-Domain Analysis

Next, the time-domain response to a step voltage source
of 1 V, with an internal resistance of 1 Ω and a risetime of
50 ps, is simulated. The load is a 1-pF capacitor. The results
are obtained via a Fourier analysis with 100 harmonics.
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Fig. 4. Step response of the IEM line subject to LER.

Fig. 4 shows the voltage vL transmitted to the far end of
the line. The LER parameters are in this case the same as
for the frequency-domain analysis and cause an appreciable
variation of the voltage waveform, although the dominant
effect is here the ringing, caused by the combination of the
inductances of the line and the capacitive load. Therefore, to



better highlight the impact of the roughness parameters, the
probability density function (PDF) of the voltage maximum
overshoot, occurring at around 0.1 ns, is simulated for different
correlation lengths ∆ℓ. The results in Fig. 5 show that for
shorter correlation lengths (i.e., rougher profiles) the range of
the voltage variation is narrower. This is because the effect of
LER tends to be averaged out. Such a behavior is in agreement
with literature results [6]–[11].
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Fig. 5. PDF of the voltage maximum overshoot obtained for various
roughness correlation lengths.

IV. CONCLUSIONS

This contribution introduces a comprehensive modeling
framework for on-chip interconnects affected by LER. Being
based on Telegraper’s equation with dispersive RLGC param-
eters, it also allows to capture all the relevant electrical (e.g.
skin and slow-wave) effects, resulting in an accurate statistical
signal integrity analysis.

The method is based on the creation of a macromodel
of the p.u.l. parameters as a function of the edge variation
from its nominal position. This allows to inexpensively obtain
the longitudinally varying line parameters, whereas the direct
calculation would be virtually impossible. Furthermore, a
perturbation technique is adopted to solve the equations for
the resulting NUTL. This second step introduces an additional,
significant computational advantage. The combination of these
two elements makes a repeated-run statistical analysis for
several LER profiles feasible and tractable.

The effectiveness of the proposed approach is demonstrated
by analyzing an IEM on-chip line. The frequency-domain
behavior in presence of LER is assessed and the impact
of LER’s correlation length on the time-domain response
variability is discussed.

In future work, the method will be extended to multicon-
ductor lines, where a non-negligible effect of LER on crosstalk
is also expected.
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