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Abstract-This paper explores hardware specialization of low
power processors to improve performance and energy efficiency. 
Our main contribution is an automated framework that analyzes 
instruction sequences of applications within a domain at the loop 
body level and identifies exactly and partially-matching sequences 
across applications that can become custom instructions. Our 
framework transforms sequences to a new code abstraction, a 
Merging Diagram, that improves similarity identification, clusters 
alike groups of potential custom instructions to effectively reduce 
the search space, and selects merged custom instructions to 
efficiently exploit the available customizable area. For a set of 
11 media applications, our fast framework generates instructions 
that significantly improve the energy-delay product and speed
up, achieving more than double the savings as compared to a 
technique analyzing sequences within basic blocks. This paper 
shows that partially-matched custom instructions, which do not 
significantly increase design time, are crucial to achieving higher 
energy efficiency at limited hardware areas. 

I. INTRODUCTION 

Hardware specialization has recently become a hot topic 
due to the end of Dennard scaling [1], which forces chip 
designers to focus on optimizing not only performance, but 
also power. Customizing hardware for each of the myriad of 
modem applications is infeasible. We instead explore specia
lization for a domain of applications, which are more likely 
to run on the same machine and perform similar tasks [2]. 
Moreover, using reconfigurable hardware to implement spe
cialization facilitates adaptation for both new applications and 
different domains, extending the lifetime of the hardware. 

In this paper, we identify common code sequences across 
applications, which can be transformed into custom instruc
tions (CIs) that are accelerated in hardware in a domain
specialized functional unit (DSFU). We assume that CIs are 
executed in a low-power application-specific instruction-set 
processor (ASIP) [3], with an instruction-set architecture con
figurable either in the field (with an FPGA) or at design time. 

There exists a wealth of prior work in CI design. However, 
this prior work is either limited to identifying acceleration op
portunities within a single basic block [4], [5], and/or targeting 
isolated applications [6], [7]. In contrast, in this work we target 
CI acceleration across a domain of applications which was 
previously found to achieve larger speedups at small (realistic) 
area overheads [5]. Finding acceleration opportunities across 
applications, however, is challenged by the difficulty of finding 
exact matches of code sequences beyond the basic block level, 
which is why this work contributes by studying acceleration 
opportunities across basic blocks through partial matching of 
different implementations of code sequences. 

978-1-4799-1925-3/15/$31.00 © 2015 IEEE 

The overarching contribution of this work is a complete and 
automatic methodological framework to identify fruitful CIs 
across a set of applications from a domain. While this search 
space can grow exponentially, we develop steps to tractably 
generate a set of potential CIs by preferably merging those 
with high similarity. We first use profiling to extract hot loops 
from the applications. We use high-level synthesis to gather 
execution time and hardware area measurements for several 
implementation versions of the potential CIs. Our framework 
then transforms the sequences into a new Merging Diagram, a 
canonical representation to facilitate similarity identification, 
and merges CIs that could be executed in the same DSFU 
pipeline to reduce specialized area. We cluster CIs to identify 
not only those that have exact functional similarity but also 
those with partial similarities that could cover more code 
while reducing the needed area for the DSFU. Finally, our 
framework selects a set of CIs that fit into a particular hardware 
area, maximizing energy efficiency and performance speedup 
across the applications. We demonstrate the effectiveness of 
the framework using 11 media benchmarks in the context of 
a superscalar in-order processor. We report average speed-up 
improvements of up to 1.98x for performance and 3.35x for 
EDP. 

Overall, this paper presents the following key contributions: 

• An automated framework to quickly and tractably 
explore the design space of accelerating a domain 
of applications, also exploring many code implemen
tations of each custom instruction that will run on 
domain-specialized functional units. 

• The Merging Diagram, a canonical representation of 
CIs across basic blocks, or at the loop body level, 
which facilitates similarity detection, which in turn 
achieves more than double the performance and en
ergy improvements than for CIs within basic blocks. 

• Clustering-based partial matching of code sequences 
to expand the opportunity for CIs to accelerate more 
computation within a limited area budget, which im
proves performance from 1. 73 x to 1.88 x and energy
delay product (EDP) by 2.53x to 3.04x over exact 
matching for a limited area budget, or alternatively 
saves significant area for a given energy efficiency. 

• A constraint-based selection mechanism that, with a 
novel objective function, solves the problem of choos
ing an energy-efficient set of specialized hardware to 
fit in limited area while accelerating a domain. 
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Fig. I. Block diagram of a modified Atom processor pipeline that includes 
a DSFU. 

II. BACKGROUND AND MOTIVATION 

The CIs we target in this paper aim to accelerate a 
domain of applications. They are executed on a domain
specialized functional unit (DSFU) integrated within the low
power processor core's datapath, as shown in Figure 1. This 
would be technically feasible with the last generation of 
FPGAs, connecting a processor core to a reconfigurable array 
seamlessly [8]. Deployment of DSFUs is more effective than 
specializing a complete processor and they are easier to 
program than bigger off-core accelerators. However, this kind 
of acceleration presents several challenges in existing design 
methodologies. 

With a limited hardware area for implementation, we want 
to maximize the CIs' utilization. We can achieve this by 
targeting regions of code beyond basic blocks, although we 
must keep the number of data transfers from and to the DSFU 
limited to avoid high transfer overhead. In spite of the fact that 
there exist CIs with memory support [9], our CIs read and write 
data from and to the processor's register file to simplify the 
design and to not increase energy consumption significantly. 

There are many techniques that select CIs targeting differ
ent objectives and systems. A recent survey on those methods 
can be found in [10]. Most known previous works extract 
patterns of code within a basic block [11], [12], [13]. Going 
beyond the basic block level is key to improve performance 
and justify the design effort of custom instructions, espe
cially if the platform is an FPGA, which is reported to run 
a circuit implementation up to 4.6x slower than its ASIC 
equivalent [14]. Previous work reduces energy for general
purpose computing using a co-processor that extracts execution 
pipelines from the loop body [15]. Within the application
specific field, DySER [7] accelerates applications by extracting 
computation that runs on accelerated functional units. 

Identification of CIs for a domain is challenging, because 
we must find similar code patterns that repeat across ap
plications to improve hardware reusability. Inside the basic 
block, small patterns of partially-matched subgraphs have been 
identified via heuristics working on the data-flow graph [4]. 
Several works discuss the challenges of merging the data
flow graph representation of a CI [2], [16], [17]. We have 
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TABLE I. PERCENTAGES OF AREA OCCUPANCY AND EDP 
IMPROVEMENT FOR DIFFERENT CI IMPLEMENTATIONS. 

Bencllmark ID Implementation % area % EDP improvement 
cjpeg gsmdec 

cil.l no ullroll 0.0020 +5.3 -1.0 cjpeg 
cil.2 ullroll 4 0.0080 +7.1 -1.0 
ci2.l ullroll 4 0.0013 -1.0 +218.7 gsmdec 
ci2.2 ullroll 8 0.0027 -1.0 +290.6 
mcil cil.l + ci2.l 0.0029 +4.5 +217.0 cjpeg+gsmdec 
mci2 cil.2 + ci2.2 0.0087 +6.2 +227.0 

previously proposed domain-specific acceleration, analyzing 
code sequences within the basic block, and doing exact
matching using a canonical representation [5]. While com
monly used control and data flow graphs (CDFGs) hold the 
exact structure of a program, a canonical diagram represents 
the program's functionality, thus exposing common functions 
across applications that can become the same CI. In this paper, 
we also use a canonical representation, but extend the CI 
beyond the basic block and add partial matching. 

Another issue less explored in the CI design literature is 
considering different circuit implementations for a CI repre
sentation as part of the CI exploration. We consider different 
implementations of each CI, i.e. several unrolling factors 
and vectorization, because they offer divergent tradeoffs and 
benefits. Consider, for instance, the CIs listed in Table I. For 
each CI, we show the benchmark where it was extracted, the 
ID, implementation details, the percentage of area it takes on 
a Virtex 7 FPGA and the EDP improvement (higher is better) 
of each application when that CI is implemented in the DSFU. 
The first four rows are application-specific CIs, while the last 
two ones merge the previous CIs into domain-specific ones. By 
exploring different implementations, we can vary the choice of 
which to include depending on the available area and potential 
EDP gains. Note that different implementations present the 
additional challenge of a bigger search space. We try to avoid 
exponential search algorithms, keeping the execution time of 
the framework linear with the search space size. 

As we focus on low-power acceleration, the area budget is 
a key constraint that guides our design methodology. RlSPP [6] 
is an adaptable ASIP where instructions also compete for area 
resources. Their selection objective is founded on minimizing 
a specific application's total time in a reconfigurable processor 
context, without optimizing energy. QsCores [18], although tar
geting coarser acceleration units, identifies and merges similar 
code patterns. Their selection heuristic relies on instruction 
coverage and area, only an approximation of our selection 
objective. In contrast, our design methods target not only the 
area budget, but try to optimize both energy and performance. 

III. CUSTOM INSTRUCTIONS DESIGN PL ATF ORM 

We assume an in-order Intel Atom as our baseline proces
sor, modified accordingly to the model in Figure 1. CIs execute 
on a DSFU that features several configurable pipelines and 
input and output registers of 16 x 128-bit entries. The DSFU 
reads and writes data from the processor's register files. Data is 
transferred into the DSFU at the beginning of the computation, 
and results are written back after it finishes. Loads and stores 
are therefore completely decoupled from CI execution. CIs that 
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Fig. 2. Automatic framework for the implementation of merged custom 
instructions. 

execute on the DSFU are multi-cycle and have variable latency. 
We do not consider parallel execution of the DSFU with the 
processor's functional units because it has been proven that 
the performance improvement is not significant enough [19]. 
Thus, when the DSFU executes, the rest of the pipeline stalls. 

Figure 2 shows a high-level representation of our automatic 
framework that is a contribution of this paper. Starting with 
a set of applications from a domain, the Custom Instruction 
Generation module (on the top) will detect and generate 
Cis based on profile information. The subsequent Custom 
Instruction Selection module (on the bottom) merges those Cis 
to reduce area and selects the best subset for the target domain. 

IV. CUSTOM INSTRUCTION GENER ATION 

In our Generation module (upper half of Figure 2), we 
first profile each of the input applications, identifying their hot 
loops in step lA. We extract those hot loops' bodies in step 
lB. As our target Cis operate on data transferred from and to 
the register file, there is a transfer time before the execution 
starts and when it ends. Thus, memory operations are sliced 
and placed before and after the loop body computation. In 
step lC, we simulate the applications and their hot loops 
to measure cycles and energy consumption in the baseline 
processor. In step lD, we implement Cis in hardware with a 
High Level Synthesis (HLS) tool. We apply different unrolling 
and vectorization factors in the HLS transformation. Therefore, 
besides the implicit instruction-level parallelism of the Cis, 
we have also potential data-level parallelism from the HLS 
optimizations. From now on, we define CI as the high-level 
representation of a loop body that can be accelerated in 
hardware, and we talk about CI variants or only variants to 
specify distinct implementations of a CI (for example, with dif
ferent unrolling factors). Thus, depending on the optimizations 
applied, we can obtain several variants of the same CI, as we 
saw in Table I. The Generation module produces application
specific CI variants with their implementation details. 
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V. CUSTOM INSTRUCTION SELECTION 

Most of our main contributions of this paper are imple
mented in the Selection module of the automatic framework 
(bottom half of Figure 2), which reduces the gigantic search 
space of identifying a good set of Cis across a domain of 
applications. We start with CI variants that are expressed 
in the compiler's Intermediate Representation (IR). Step 2A 
transforms them into a new canonical representation: Merging 
Diagrams. Because we use a canonical representation and 
create a global ordering of variables, the identification of 
similarities between Cis in step 2B is computed quickly 
and efficiently. This step quantifies similarity by the distance 
between pairs of CI variants. The clustering, in step 2C, 
allows the framework to do both exact and partial matching of 
CI variants, the latter expanding the acceleration potential at 
smaller areas. In step 2D, we perform an estimation of the new 
area, energy and speedup of each clustered group of variants. 
Finally, in step 2E, our area-aware selection step solves the 
optimization problem of fitting the best group of candidates, 
that save the most energy, into a limited area. 

A. Merging Diagram: Step 2A 

Identifying similarity between CI variants in a non-unified 
representation is difficult due to the amount of unnecessary 
information a modem compiler IR includes. Also, a represen
tation such as a CDFG, which expresses structural relations 
between operators, does not expose functional similarities, 
since different coding styles among applications may hide 
them. Therefore, we transform the codes of the CI variants 
expressed initially in a compiler IR, into an abstract, canonical 
representation: the Merging Diagram (MD). 

The MD represents arithmetic and logic operations (within 
the basic block), and predicate information (at the loop level), 
both with unrestricted number of inputs and outputs. Its 
representation is partially based on Taylor Expansion Diagrams 
(TEDs) [20] and Binary Decision Diagrams (BDDs) [21]. We 
have used TEDs previously for exact similarity detection of Cis 
within a basic block [5]. However, this work improves upon 
the representation by including more types of computations 
and code sequences across basic blocks. In addition, MDs 
are built to facilitate the identification of partial matches in 
a reasonable computational time. The following definitions 
explain the details of our new representation, which include 
both a modified versions of TEDs and BDDs. 

Definition 1: An Augmented TED (AugTED), is a directed 
acyclic graph based on linearized and reduced TEDs. It is 
composed of a labeled set of nodes V, a weighted set of 
edges E, and the terminal node. In normal TEDs, V represents 
variable names and E are additions/subtractions or multiplica
tions. AugTEDs expand TED nodes to represent any kind of 
computation, using variable renaming. Here, labels in V can 
be integer, float or special. Integer and float labels represent 
variable types, and special labels denote a function that cannot 
be represented by a Taylor expansion. 

Definition 2: A Linking BDD (LinBDD) is a directed 
acyclic graph based on reduced and ordered BDDs. It consists 
of a labeled set of nodes V', a set of edges E' and terminal 
nodes 0 and 1. LinBDDs have a third edge Link to BDDs' 0-1 
decision edges, which references an outside diagram, namely 



IR 

%sub = sub nsw i32 %qll, %q21 

%shl = shl i32 %sub, %c 

%cmp = icmp sit i32 %shl, 0 
%subl = sub nsw i32 0, %shl 

%cond = select il %cmp, i32 %subl, i32 %shl 

Variable renaming 

PMl: %cmp; PM2: %subl; PM3: %shl 

SA(slt): icmp sit; Ml: %qll; M2: %q21; M3: 2'(%c) 

Merging Diagram 

-Add edge 
---+Mu/edge 
. . . . • Link edge 

Fig. 3. Example of Merging Diagram for the IR on the left. 

an AugTED. A LinBDD is constructed with the Shannon 
expansion of boolean functions created with the If-Then-Else 
(ITE) operator: ITE (I, T, E) = I . T + j. E. 

Definition 3: A Merging Diagram is a data structure that 
provides a canonical representation of a predicated code 
region. It consists of a set A of AugTEDs that represent 
computations and a set L of LinBDDs that represent control 
flow execution. Each Link node from the members in L 
references a member in A. 

Figure 3 shows an example of an MD for a given code 
sequence. The left part of the MD is a LinBDD and its nodes 
are linked to AugTEDs on the right by Link edges. There is 
a special label (SA (slt)) that stands for a relational operator 
that cannot be expressed by Taylor expansions. 

MDs have several advantages over CDFGs. They detect 
more functional similarities, and their node-labeling conven
tions and edge-node connections are standardized after con
struction. This results in a subgraph isomorphism detection 
of reduced complexity - linear instead of exponential for the 
general case - which is used in the distance calculation of 
Section V-B, improving the overall application performance. 

1) Merging diagram construction: To build a canonical 
MD, we follow the steps of Algorithm 1, whose input consists 
of the IR of the region of code of a CI variant, which in the 
example of Figure 3 would be the code on the upper left. First, 
in lines 3 - 5, we extract the polynomial representation of the 
computations and the branch predication of the code. With the 
base polynomials, we establish a precise variable renaming that 
unifies the variable name space in lines 6 -20, which facilitates 
fast similarity identification in step 2B. We decompose each 
polynomial into its monomials, and we rename each variable 
based on the type of monomial where it is found. We find 
primarily adding and multiplying types of monomials, but 
also cover floating point and predicated types. For instance, 
in Figure 3 variables are renamed as A (adding) and M 
(multiplying) preceded by P (predicated) or S (special). 

Then, in lines 21 - 22 we define a strict variable ordering 
to perform the expansions, common to all variables implicated. 
As we have multiple polynomials that expand with the same 
set of variables, we first put variables in ascending order based 
on the number of times they occur. This ensures that we will 
have a minimum number of expansions, resulting in a more 
compacted MD. For the same reason, in the case of a tie in the 
number of instances between multiplying and adding variables, 
we prioritize the multiplying ones. 
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Algorithm 1: Merging Diagram construction 

input : A region's IR code I R 
output: A Merging Diagram M D 

1 Array P, pi +--- 0 
2 2D array R +--- 0 
3 PI +-- ComputationPolynomials(I R) 
4 P2 +-- PredicationPolynomials(I R) 
5 P +-- PI U P2 
6 for pEP do 
7 M +-- GetMonomials(p) 
8 for m E M do 
9 

10 
11 
12 
I3 
14 
15 
16 
17 end 

K +-- GetMonomiaIType(m) 
V M +-- Get V ariablesN ames( m) 
for vm E VM do 

end 

if vm rt R then 

I 
vml +-- RenameVar(vm,K) 
add < vm,vml > to R 

end 

18 pi +-- ReplaceVars(p, R) 
19 add pi to pi 
20 end 
21 Q +-- CountOccurrencesVars(pl) 
22 0 +-- AscendingOrderVars(Q) 
23 s +-- size of 0 + 1 
24 M D +-- < Diagram: s x s array, Link : 2D array> 
25 M D. Link +-- LinkToAugTEDVars(P,R) 
26 for pi E pi do 
27 I diagramExpansions(pl, M D . Diagram, 0) 
28 end 
29 return MD 

Finally, in lines 23 - 28 we create an MD structure with 
a Diagram that contains all the nodes and edges from the 
AugTEDs and LinBDD, except for the Link edges that are 
kept apart. Following the variable ordering, for each rewritten 
polynomial we build the MD expanding each term recursively 
as it is done regularly with TEDs and BDDs. The resulting 
representation is still canonical for the assumed variable order, 
as is the case for regular TEDs and BDDs. 

2) Global diagram of variants: To have a diagram that 
represents the entire design space of CI variants, thus cutting 
down on computation cost in later steps, we combine all the 
AugTED and LinBDD polynomials to obtain a global MD 
unified representation. For each variant, we locally rename 
its polynomial variables, saving the naming convention and 
number of instances in a global structure. Then, based on that 
locally collected information, we produce a global variable 
ordering that is fixed for the design space. Finally, MDs are 
produced individually for each variant with the global ordering. 

B. Distance Calculation: Step 2B 

We need to establish a concrete metric that measures 
similarities among CIs to guide the subsequent clustering 
step of the framework. Thus, we developed a new way to 
measure how dissimilar two CI variants are in terms of their 
functionality, using the MD. 
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Fig. 4. Hierarchical clustering of custom instructions. Exact matching 
instructions are found at the bottom, while nodes closer to the root group 
are increasingly less similar CIs. CIX X _ vy: CI with identifier X X and 
implementation variant y. 

We perfonn a distance calculation for pairs of MDs of 
variants that do not implement the same loop body, Clx and 
C I y. We use the previously built global diagrams to speed up 
this calculation. If we would not have the global, uniformed 
variable space that we obtained in Section V-A2, we would 
have to build a pair of diagrams for each pair of CIs being 
compared, which would be computationally very expensive. 
Thus, based on the pre-built global diagrams, we obtain the 
number of AugTED-operations and LinBDD-branches that in 
Clx do not match with those in Cly, namely nMx, and 
vice versa, nMy. An MD node Vx matches another MD node 
Vy if their labels and out edges also match. The matching 
information is kept for the merging step explained below in 
Section V-D. We also count the number of total AugTED and 
LinBDD nodes that each MD variant has - Totx and Toty_ 
Then, we compute the distance bas: 

b(Clx,Cly) = average (nMx/Totx,nMy/Toty) (1) 

One-to-one distances are saved in a condensed distance matrix. 

C. Hierarchical Clustering: Step 2C 

For domain-specific acceleration, merging CIs together 
reduces energy consumption by shrinking the implementation 
area, or improves perfonnance by allocating more CIs in the 
constrained area. We have to merge circuits of CIs that have 
more in common to maximize area reduction, as well as mini
mize the implementation overhead due to circuit multiplexing. 
However, with the huge set of CI variants that we obtain when 
we work with multiple applications, it is prohibitive to try 
all the possible combinations of CIs that could be grouped 
together. Therefore, we group CIs based on a hierarchical 
clustering that organizes groups by more to less functional 
similarity, cutting down the search space to avoid those groups 
that are not similar enough to be worth implementing together. 

Distances between variants help to quickly decide which 
ones are better to merge together to reduce energy consump
tion. We perform hierarchical, agglomerative clustering of 
CI variants, obtaining a dendrogram, a tree-like structure, as 
shown in Figure 4, where tree leaves represent exact matches 
and internal nodes denote partial matches. Starting from the 
baseline CI variants, we fonn exact-matching clusters based 
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on the distance matrix (leaves - level 0 in the figure)_ Then, 
distances between the newly formed clusters use the complete 
method to determine the agglomerative distance, that is, the 
maximal distance between any two variants in the cluster 
(levels 1 to 3, to the root)_ From leaves to root, we find different 
versions of merged variants, ordered from more to less similar. 

Some of the obtained clusters may include variants that 
target the same CI. In Figure 4, level 0 includes two variants 
of the same CI: ClOD_vi and ClOO_v2; a variant of ClOi, 
and {ClO e v2, ClO2_ vi}, that is the exact matching of two 
different implementations of two different CIs_ Level 1 has the 
cluster {ClOD v2, ClOi vi}, which has the maximum similarity 
for partial matching. Variant ClOD_vi from level 0 is clustered 
at level 2 with {ClOO_ v2, ClO e vi} from level 1. However, 
as a merged variant cannot implement a concrete CI more 
than once, we produce different versions that do not duplicate 
the loop body (CIOO or CIOl) within the clusters where this 
problem occurs. Thus, at level 2 we generate two solutions: 
{ClOO_ vi, ClOe vi} and {ClOO_ v2, ClOe vi}. Since the latter 
already exists at levell, we will eventually discard it, although 
its information is still used to generate the cluster at level 
3. Note that this can induce an explosion in the number of 
solution clusters for a given level. In the case of a large 
number of cluster versions, we select a reduced group chosen 
heuristically by global perfonnance speedup. Area and energy 
estimations at this point would slow down the generation 
of solutions, and by experimentation we find that for this 
particular task, perfonnance speedup is a fair metric_ 

D. Merging Estimation: Step 2D 

With the clustering formation, we obtain a bigger set of CI 
variants, some of which are merged to save area. We estimate 
the new area, performance and energy gains of merged variants 
in order to run the selection step with accurate infonnation. 

Based on the distance calculation infonnation (Section 
V-B) of non-common matches between each pair of variants, 
we obtain the area of operators that are shared (shared) 
and of those that are not (non_shared)_ For sharing logic, 
we introduce multiplexers with an extra area cost, overhead. 
Thus, we calculate the area ai of a merged CI variant i as: 

N 

ai = overheadi + sharedi + L non_sharedij (2) 
j=l 

To model the performance of an accelerated application, we 
first obtain the cycles c_CSW that a hot loop iteration would 
take to execute in the baseline processor, excluding memory 
operations, from simulation. We also obtain the number of 
iterations N _it of that loop for a given execution of the 
benchmark From hardware synthesis, we get the number of 
cycles c_HW that a CI variant takes_ We calculate the cycles 
c_T to transfer data to the DSFU local memory as a function 
of the input data size_ With the previous data we obtain the 
cycles we save executing a CI variant as: 

We calculate the new number of application cycles as: 

AppJycles = c_totaCSW - c_saved (4) 
with c_totaCSW as the application cycles without CIs. 



Finally, the modeled energy consumption of an application 
that uses CIs is calculated as: 

Eapp = Ebaseline + ECl (5) 

with Ebaseline as baseline processor's energy model and ECl 
the CI energy consumption. The latter is modeled as the sum 
of its dynamic and static components: 

Ec I = Pdynamic X T C I + Pstatic X Ttotal (6) 

where Pdynamic and Pstatic are, respectively, the dynamic and 
static power of the hardware components that implement the 
CI variant, TCI is the time that the CI is active, and Ttotal is the 
execution time of the application calculated from App_cycles. 

E. Area-Aware Selection: Step 2E 

Implementation area is an expensive commodity in our 
low-power target that largely influences the energy consump
tion of the final design. However, performance gains also play 
an important role, because a faster application would consume 
less energy. Therefore, in the final step of the Selection 
module, we address the performance and energy trade-off 
when choosing the best fitting set of CI variants for a given 
hardware area. We model this optimization as a Knapsack 
problem, in which one tries to fit a subset S of a collection 
of objects C - each object 0i with an intrinsic value Vi and 
weight Wi - within limited mass M so the sum of the values of 
the final subset is maximized and the sum of the weights does 
not exceed M. In our case, we try to fit the n CI variants, 
merged and not merged, within a limited hardware area A. 
Each Ci candidate has a value Vi that we describe later, and a 
hardware occupancy, hWi. We have an additional requirement 
in our problem: as each CI can be selected only once, though 
it can be implemented by different variants - with distinct 
umolling factors, or merged with other instructions - once we 
select one CI variant, all other variants of the same CI are 
invalidated for the following selection steps. 

We model our problem with Mixed Integer Linear Pro
gramming (MILP). We define the constraints: 

n n 
'"' C x hw < A L..t 't 't - (7) 
i=O i=O 

with lbi a loop body that can be implemented by several CI 
variants. As our main goal is to accelerate execution and save 
energy, our objective function tries to maximize the energy
delay product (EDP) improvement. However, the total EDP 
value changes depending on the area occupancy, and thus, it 
cannot be deterministically precomputed before the selection 
starts. Therefore, to obtain consistent results, we define a 
specialized objective function: 

n 
L Ci X O"_EDPi -+ max 
i=1 

(8) 

The metric 0" _E D Pi of a concrete CI variant is the value 
Vi in the original Knapsack problem and we calculate it as: 

B 

O"_EDPi = L 1100_EDPijll x (1 + O"_Ai x Ai ) (9) 
j 

where B is the number of applications that the current vari
ant targets; 110" _EDPij II is the original application j's EDP 
minus the EDP with the variant, normalized to the observed 
maximum for that application; 0" _Ai is applicable only to 
merged variants, since it is the percentage of area we save 
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by merging and Ai is the percentage of the total area that the 
variant takes. We find that this metric selects more medium
sized variants that help to save area occupancy, and have lower 
overhead and lower static power than larger variants. From 
experimentation, we confirm that this objective gives stable 
results and maximizes EDP fairly among all applications. 

F. Complexity 

While the overall complexity of the framework varies in 
each step, our methodology reduces the search space to keep 
the exploration tractable and fast. We establish bounds based 
on the number of total CI variants. Selection is the most critical 
step and could be exponential in the worst-case. Therefore, we 
try to always keep a reduced number of CI variants candidates, 
while maintaining energy and performance efficiency. 

For each input application from the set of B benchmarks 
we have a number of CIs C, and each CI is implemented as 
a variant num Variants times. The total number of variants 
CV processed to build MDs by Algorithm 1 is determined 
as CV = L!1 L��l numVariantsj. The complexity of 
calculating distances between pairs of MDs (Section V-B) is 
O(CV x (CV - C - 1)). However, the key design decision 
here is to have a global MD, which obviates the need for a new 
MD to be computed to compare each pair of variants, speeding 
up the calculation. Finally, by performing the hierarchical 
clustering step explained in Section V-C, and using a heuristic 
to limit the number of cluster versions per level, the final 
number of generated solutions that the selection of Section V-E 
processes is within the bounds of O( CV) .  We thus retain the 
most promising CI candidates, in terms of area, performance 
and energy efficiency, while making sure the selection step's 
complexity does not explode exponentially. 

V I. EVALUATION 

A. Experimental Setup 

We now describe the setup and experimental evaluation 
of our automated exploration framework. We evaluate the 
framework with eleven applications from the media domain: 
cjpeg, djpeg,gsmdec,gsmenc,mpeg2enc, optflow, 
rawcaudio, rawdaudio, susan, tmndec and tmnenc. 
We identify hot regions of code with the LLVM profiler [22] 
and compile all applications with LLVM-Clang with an un
rolling factor of 8, automatic vectorization, and optimization 
-02 as the baseline. Umolled, non-vectorized code sequences 
in the LLVM IR are analyzed to generate the polynomials for 
the Merging Diagrams. Software cycles are measured with the 
Sniper simulator [23], with changes to accurately simulate an 
Intel Atom processor running at 1.6 GHz. Power measurements 
on Sniper were obtained with McPAT [24]. We synthesize the 
DSFU's description from C code with Vivado HLS 2013.3 [25] 
to obtain the circuit design cycles and area consumption for a 
target Xilinx Virtex 7 (XC7VX690T) FPGA that runs at 400 
MHz - 4x slower than the baseline processor. DSFU power 
estimations are obtained with the Xilinx Power Estimator 
(XPE). Cycles and power data are fed into the models of 
Section V-D to obtain results. Although we use an FPGA as a 
testing platform, we do not consider run-time reconfiguration 
in this work. We use the Fastcluster library [26] for hierarchical 
clustering, and the interface for the CPLEX optimizer [27] in 
the selection module is OpenOpt [28]. 
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Fig. 5. Average speedup versus percentage of area occupancy of the DSFU 
for exact and partial matching methods, targeting one or many basic blocks. 
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Fig. 6. Average EDP improvement versus percentage of area occupancy of 
the DSFU for exact and partial matching methods, targeting one or many basic 
blocks. 

B. Results Discussion 

We now present experiments and results to assess how 
well our framework can identify custom instructions to be 
accelerated by a DSFU in hardware, measuring both speedup 
and improvement in EDP across various areas. 

Figure 5 presents a comparison of different configurations 
of our framework, with DSFU area on the x-axis expressed 
as a percentage of the Virtex 7's area, and the average 
performance speedup across the domain on the y-axis. Figure 6 
shows the same comparison, but this time with average EDP 
improvement on the y-axis. Dashed lines show improvements 
achieved when we use CIs targeting code within basic blocks. 
At the larger areas, performance improvement reaches a max
imum of 1.48x and EDP improvement goes up to 1.67x the 
baseline. We compare this to the solid lines in the figures, 
which target code regions across basic blocks. In this case, 
speedup reaches a maximum of 1.98x and EDP improvement 
goes up to 3.35 x .  Considering regions with multiple basic 
blocks gives us a significant boost in both performance and 
energy efficiency, because we are able to accelerate 31 % more 
statically counted body loops than with one basic block. Also, 
CIs across basic blocks cover 41 % more dynamic instructions 
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Fig. 7. Speedup (Perf.) and EDP improvement for each benchmark at a 
limited implementation area (1.8%) across basic blocks. 

on average. Exploring CIs across basic blocks covers more 
code, expands the acceleration opportunities, and thus achieves 
higher speedups. 

In the same figures, we analyze the efficacy of exact 
versus partial matching by comparing blue and orange lines, 
respectively. Note that partial matching choices include all 
those CIs matched with exact, and then additional CIs that 
could be partially matched. We start seeing a difference around 
0.5% of the area across basic blocks, noting that partial 
matching achieves larger speedups and EDP improvements as 
compared to exact matching, given the same area. For instance, 
with a limited area budget (1.8%), we observe a speedup of 
1.88x and an EDP improvement of 3.04x when using partially 
matched CIs, while with exact matching we obtain a speedup 
of 1.73x and an EDP improvement of 2.53x . At 2.2% of 
the area, the EDP improvement difference is more noticeable, 
2.57x against 3.25x . Alternatively, we see that for a given 
EDP improvement, partial matching saves area. For an EDP 
improvement of 3x , exact matching takes 4% of the area, 
whereas partial matching takes only 1.8% of the area: a savings 
of 55% of the chip's reconfigurable area. This is important as 
the area available for the reconfigurable DSFU in a low-end 
processor like the one evaluated would be much less than the 
area available in a Virtex 7. 

Figure 7 shows results for speedup and EDP improvement 
for each benchmark at the limited area (1.8%) discussed above, 
comparing exact and partial matching across basic blocks. As 
our selection optimizes for EDP, we see larger EDP gains than 
speedup gains, when going from exact to partial matching. 
The speedup difference is moderate because of our selection 
objective. A power-hungry CI with high speedup but low 
energy efficiency will not be selected. Looking at the EDP 
of particular benchmarks, only two benchmarks marginally 
suffer a speedup and energy efficiency reduction: djpeg 
and optflow. However, most benchmarks have a significant 
improvement in their performance and EDP. For instance, the 
energy efficiency of cjpeg improves from 1.06x to 2.38x , 
for susan goes from 8.88x to 10.42x , and rawdaudio 
gets 4.76x with exact similarities and 6.28x with partial ones. 
The average of all EDP improvements with partial matching is 



positive and therefore fair to all applications. Partial similarities 
contribute to area shrinking, which is key to energy efficiency. 
For example, with partial similarities one of the selected CIs 
targets hot regions in seven different benchmarks, which results 
in an area reduction of 80% compared to exact ones. 

V II. CONCLUSIONS 

This paper presents a methodology and framework to 
automatically extract custom instructions from a domain of 
applications, ultimately selecting those that achieve the highest 
performance improvements and energy efficiency when accel
erated. To do so, our proposal explores the design space of 
tightly-integrated configurable functional units of limited size 
that accelerate applications across a domain. The presented 
framework transforms code sequences at the loop body level 
into a canonical representation, which facilitates fast similarity 
detection, even considering several implementations of each 
custom instruction. We then cluster CIs to be able to find 
partially-matching sequences to minimize specialized area. Our 
experimental results with 11 media benchmarks show that 
looking across basic blocks achieves a speedup of 1.98x and 
an EDP improvement of 3.35 x ,  a significant gain over looking 
within a single basic block (speedup of 1.48x and EDP 
improvement of 1.67x ). Across basic blocks, partial matching 
compared against exact matching is crucial for achieving larger 
performance (1.88x versus 1.73x ) and EDP improvements 
(3.04x versus 2.53x ) for a limited hardware area (1.8%), or 
for a given energy efficiency, significantly reducing the needed 
hardware area. The presented work shows the applicability of 
introducing configurable accelerators with limited area inside 
simple processors to accelerate a large number of applications 
from a domain, improving the system's energy efficiency. 

ACKNOWLEDGMENT 

We thank the anonymous referees for their valuable feed
back. This work is supported by the European Research 
Council under the European Communitys Seventh Framework 
Programme (FP7/2007-2013) I ERC Grant agreement no. 
259295, the Spanish Government under the Severo Ochoa 
program (SEV-2011-00067), the Spanish Ministry of Science 
and Technology (TIN2012-34557) and the Generalitat de 
Catalunya (MPEXPAR, 2014-SGR-I051). We thank the Xilinx 
University Program for its hardware and software donations. 

REFERENCES 

[I] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and 
A. R. LeBlanc, "Design of ion-implanted MOSFET's with very small 
physical dimensions," IEEE Journal of Solid-State Circuits, vol. 9, pp. 
256-268, Oct. 1974. 

[2] H. Huang, T. Kim, and Y. Hoskote, "Edit distance based instruction 
merging technique to improve flexibility of custom instructions toward 
flexible accelerator design," Proceedings of the Asia and South Pacific 
Design Automation Conference, ASP-DAC, pp. 219-224, 2014. 

[3] K. Keutzer, S. Malik, and A. R. Newton, "From asic to asip: The next 
design discontinuity," in Computer Design: VISi in Computers and 
Processors. IEEE, 2002, pp. 84-90. 

[4] N. T. Clark, H. Zhong, and S. A. Mahlke, "Automated Custom Instruc
tion Generation for Domain-Specific P rocessor Acceleration," IEEE 
Transactions on Computers, vol. 54, no. 10,2005. 

[5] C. Gonzalez-Alvarez, J. B. Sartor, c. Alvarez, D. Jimenez-Gonzalez, 
and L. Eeckhout, "Accelerating an application domain with specialized 
functional units," ACM Trans. Archit. Code Optim., vol. 10, no. 4, pp. 
47:1-47:25, Dec. 2013. 

8 

[6] L. Bauer, M. Shafique, and J. Henkel, "Run-time instruction set selec
tion in a transmutable embedded processor," in Proceedings of the 45th 
annual Design Automation Conference. ACM, 2008, pp. 56-61. 

[7] V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar
alingam, and C. Kim, "DySER: Unifying Functionality and Parallelism 
Specialization for Energy Efficient Computing," Micro. IEEE, vol. 32, 
no. 5, pp. 38-51, 2012. 

[8] L. Bauer, M. Shafique, and J. Henkel, "Concepts, architectures, and 
run-time systems for efficient and adaptive reconfigurable processors," 
in Adaptive Hardware and Systems (AHS). IEEE, 2011, pp. 80-87. 

[9] M. HaaB, L. Bauer, and J. Henkel, "Automatic Custom Instruction 
Identification in Memory Streaming Algorithms," in CASES, 2014. 

[10] L. J6wiak, N. Nedjah, and M. Figueroa, "Modem development methods 
and tools for embedded reconfigurable systems: A survey," Integr. VISI 
J, vol. 43, no. I, pp. 1-33, Jan. 2010. 

[II] K. Atasu, L. P ozzi, and P. lenne, "Automatic Application-Specific 
Instruction-Set Extensions Under Microarchitectural Constraints," into 
J of Parallel Programming, vol. 31, no. 6, pp. 411-428, Dec. 2003. 

[12] P. Yu and T. Mitra, "Scalable custom instructions identification for 
instruction-set extensible processors," International Conference on 
Compilers, Architecture and Synthesis for Embedded Systems, 2004. 

[13] L. P ozzi, K. Atasu, and P. lenne, "Exact and approximate algorithms 
for the extension of embedded processor instruction sets," IEEE Trans
actions on Computer-Aided Design of integrated Circuits and Systems, 
vol. 25, no. 7, pp. 1209-1229, Jul. 2006. 

[14] I. Kuon and J. Rose, "Measuring the gap between fpgas and asics," in 
FPGA'06. New York, NY, USA: ACM, 2006, pp. 21-30. 

[15] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, "Bundled 
execution of recurring traces for energy-efficient general purpose pro
cessing," in Proceedings of the 44th Annual iEEEIACM international 
Symposium on Microarchitecture, ser. MICRO-44, 2011, pp. 12-23. 

[16] M. Zuluaga and N. Topham, "Design-space exploration of resource
sharing solutions for custom instruction set extensions," IEEE Trans
actions on Computer-Aided Design of integrated Circuits and Systems, 
vol. 28, no. 12, pp. 1788-180 I, 2009. 

[17] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and P. Ienne, "Selec
tive flexibility: Creating domain-specific reconfigurable arrays," IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, vol. 32, no. 5, pp. 681-694,2013. 

[18] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B. 
Taylor, and S. Swanson, "QsCores: Trading Dark Silicon for Scalable 
Energy Efficiency with Quasi-Specific Cores," MlCRO-44, p. 163, 20 II. 

[19] J. E. Carrillo and P. Chow, 'The effect of reconfigurable units in 
superscalar processors," in FPGA 'Oi. ACM P ress, 2001, pp. 141-150. 

[20] M. Ciesielski, P. Kalla, and S. Askar, "Taylor Expansion Diagrams: A 
Canonical Representation for Verification of Data Flow Designs," IEEE 
Transactions on Computers, pp. 1-11,2006. 

[21] R. Bryant, "Graph-based algorithms for boolean function manipulation," 
iEEE Transactions on Computers, vol. C-35, no. 8, pp. 677-691, 1986. 

[22] C. Lattner and V. Adve, "LLVM: A compilation framework for lifelong 
program analysis and transformation," in CGO, Mar 2004, pp. 75-88. 

[23] T. E. Carlson, W. Heirman, and L. Eeckhout, "Sniper: Exploring 
the level of abstraction for scalable and accurate parallel multi-core 
simulation," in SC '11. ACM, 2011, pp. 52:1-52:12. 

[24] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, 
"Mcpat: An integrated power, area, and timing modeling framework 
for multicore and manycore architectures," in MlCRO-42, Dec 2009, 
pp. 469-480. 

[25] Xilinx, " Vivado high-level synthesis," http://www.xilinx.com/products/ 
design-tools/vivadolintegrationlesl-design.html, 2014. 

[26] D. Miillner, "fastcluster: Fast hierarchical, agglomerative clustering 
routines for R and P ython," Journal of Statistical Software, vol. 53, 
no. 9, pp. 1-18,2013. 

[27] IBM, "!LOG CPLEX Optimizer," http://www-Ol.ibm.com/software/ 
integration/optimizationlcplex-optimizer/, 2014. 

[28] D. Kroshko, "OpenOpt: Free scientific-engineering software for 
mathematical modeling and optimization," 2007-2014. [Online]. 
Available: http://www.openopt.org/ 


