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Abstract— This work focuses on the problematic of modeling

the drug diffusion process that occurs in the human body when

an anesthetic drug is taken up. This is performed here using

emerging tools from fractional calculus, i.e. by using fractional-

order impedance models (FOIMs). A novel interpretation is

given to the classical pharmacokinetic and pharmacodynamic

models for drug uptake in the body. The major challenges

that are encountered during this development consist of online

identification of the patient model, introducing a logarithmic

sampling time and embedding the proposed method in a closed

loop control system.

Index Terms— anesthesia, closed loop control, drug dosing,
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I. INTRODUCTION

The last few decades, modern medicine has successfully
been influenced by advanced control technologies resulting
in applications such as robotic surgery, electro-physiological
system life support and image-guided therapy and surgery.
An interesting application of control in medicine is clini-
cal pharmacology and in particular the control of general
anesthesia [1]. Monitoring and controlling the depth of
anesthesia for surgical patients poses interesting challenges
to the control engineer [2] as it is a multi-variable interaction
process that has long captured the attention of engineers
and clinicians [3]. The first designs were expert systems
that advised the anesthesiologist upon optimal drug infusion
rates during clinical trials [4]. Control of anesthesia has a
many challenges with multi-variable characteristics, different
dynamics depending on anesthetic substances and stability
problems [5]. The advantage of automated closed loop con-
trol of anesthesia is that it gives a continuous drug delivery,
contrary to intermittent control which is nowadays standard
practice. A continuous drug delivery ensures that there is no
under- or over-dose of hypnotic or analgesic drugs that could
result in patients that feel pain during surgery but are unable
to react [6].

The research presented in this paper merges classical con-
trol theory with the young promising field of fractional-order
modeling to measure pain relief levels in an unconscious pa-
tient and initiate the development of a biosensor for analgesia
levels. A few pioneering attempts to measure the analgesic
component of general anesthesia have shown that current
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state-of-art is unable to deliver suitable signals and models
for optimal regulation [7]. The result is then a high risk of
drug over- or under-dosing and unwanted post-operatively
effects, leading to increased hospitalization and health-care
costs for both society and patient [8]. The pharmacokinetic
(PK) models available in the literature for anesthesia are
linear in terms of model parameters and dynamics [9], [10].
Their frequency response is quasi-identical, less for a scaling
factor in the gain (i.e. this accounts in part for the sensitivity
to the drug with respect to the body mass index of the
patient). The pharmacodynamic (PD) models, are usually
represented by nonlinear Sigmoid (Hill) curves and represent
the relationship of the drug concentration to the drug effect
in each patient [7]. From patient-individualised control point
of view, PD models are the most challenging part of the
patient model and pose most challenges for control (i.e.
highly nonlinear characteristic).

Fractional calculus offers tools to model such nonlinear
characteristics as those of the PK-PD models with a smaller
degree of nonlinearity in model parameters [11]. The overall
purpose of this paper is to show a methodology which
enables a different, fresh view to these models and demon-
strates how they can be integrated in the control paradigm
of depth of anesthesia regulation.

The paper is structured as follows: in section II, we
describe analgesia and the coinciding diffusion process.
Section III discusses the control method that will be used
in combination with the proposed analgesia sensor and the
possible models used in this control. The grand challenges
in the development of the sensor are discussed in section IV
and the conclusions are summarized in a final section.

II. ANALGESIA: THE MISSING PIECE

General or complete anesthesia refers to inhibition of
sensory, motor and sympathetic nerve transmission at the
level of the brain, resulting in unconsciousness and lack
of sensation [5], [6], [12]. It consists of three compo-
nents: hypnosis, analgesia and neuromuscular blockade. A
schematic representation of the anesthesia paradigm in terms
of its components is given in figure 1. The hypnosis [5],
[13], [14] and neuromuscular blockade [15], [16] are well-
characterized in terms of models, measured variables and
closed loop control. The third component, i.e. analgesia,
remains challenging for control purposes because no direct
output measure is available [17]. Hence, no specific models
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are yet available for analgesia effect in the human body
during general anesthesia (i.e. unconsciousness).

Fig. 1. A personal view of the anesthesia paradigm. The items in red are
the current challenges.

Hypnosis is a general term indicating unconsciousness
and absence of post operative recall of events occurred
during surgery. The level of hypnosis is related with the
infusion of hypnotic drugs such as propofol and can be
monitored by BIS monitoring. BIS is a short-hand name for
Bispectral Index, which is a measure of the electrical activity
in the brain measured at the frontal and parietal bones of
the skull by a sensor transducer plasture on the skin [5].
Analgesia is defined as an insensibility to pain without loss
of consciousness. It is a state in which painful stimuli are
not perceived or interpreted as pain and is usually induced
by a drug. Neuromuscular blockade is induced to prevent
unwanted movement or muscle tone and causes paralysis
during surgical procedures. The muscle relaxants are given
intravenously (through the bloodstream) and act directly on
the muscles.

Hence, analgesia is the amount of pain relief achieved
during general anesthesia. The pain relief is obtained by
administrating an analgesic drug such as remifentanil to
the patient. The effectiveness of the analgesic drugs relies
on how they are able to block the neural messages to the
brain that are sent by the pain receptors. At this moment
there are no mathematical model to suggest an output effect
of analgesic drugs. In this paper, a hypothetical model is
discussed within the larger scope of closed loop control
systems and integration of such models within these loops.

III. CLASSICAL PK-PD MODELS

In order to control the depth of anesthesia, and implicitly
analgesia, by means of model based control strategies, a
model which captures the dynamics of the patient is required.
The selection of the model input and output variables is

crucial for optimal control [14]. Propofol is a commonly used
hypnotic drug to induce general anesthesia [6]. Remifentanil
is an opioid with a unique pharmacologic profile, best char-
acterized by its high metabolic clearance, independent of the
most common metabolic pathways which are usually known
to metabolize anesthetic drugs [18]. When administered
together, these two drugs interact synergistically on both
hypnotic and analgesic components of sedation. Using the
electronencephalogram (EEG), several derived, computerised
parameters like the BIS have been tested and validated as a
promising measure of the hypnotic component of anesthesia
[5], [19]. BIS values lie in the range of 0% - 100 %; whereas
90%-100% range represents fully awake patients; 60 %-
70% range and 40%-60% range indicate light and moderate
hypnotic state, respectively.

Pharmacokinetic (PK) and pharmacodynamic (PD) blocks
denote compartmental models [20]. The PK-PD models most
commonly used for propofol and remifentanil are the 4th
order compartmental model described in [9], [10], [18] and
they have the structure depicted in Fig. 2.

Fig. 2. General compartmental model of the patient, where PK denotes
the pharmacokinetic model and PD denotes the pharmacodynamic model of
an infused drug [22].

In this figure x1 [mg] denotes the amount of drug in the
central compartment. The blood concentration is expressed
by x1/V1. The peripheral compartments 2 and 3 model the
drug exchange of the blood with well and poorly diffused
body tissues. The masses of drug in fast and slow equili-
brating peripheral compartments are denoted by x2 and x3,
respectively. The parameters kji, for i �= j, denote the drug
transfer frequency from the jth to the ith compartment and
u(t) [mg/s] is the infusion rate of the anesthetic drug into
the central compartment. An additional hypothetical effect
compartment was proposed to represent the lag between drug
plasma concentration and drug response. The concentration
of drug in this compartment is represented by xe. The
parameters kij of the PK models depend on age, weight,
height and gender and the relations for Propofol can be found
in [9], [10], respectively for Remifentanil in [18].

The PK-PD model is represented by the following equa-
tions [12], [20], [21]:



ẋ1(t) = −(k10 + k12 + k13) · x1(t) + k21 · x2(t)+
+k31 · x3(t) + u(t)/V1

ẋ2(t) = k12 · x1(t)− k21 · x2(t)
ẋ3(t) = k13 · x1(t)− k31 · x3(t)
ẋe(t) = −ke0 · xe(t) + k1e · x1(t)

(1)
The effect compartment receives drug from the central

compartment by a first-order process and it is regarded as
a volumeless additional compartment. Therefore, the drug
transfer frequency from the central compartment to the
effect-site compartment is equal to the frequency of drug
removal from the effect-site compartment: ke0 = k1e =
0.456 [min−1] [5], [19]. The corresponding concentration
of xe in the effect site compartment is denoted by Ce.

The parameters of the PK models depend on age, weight,
height and gender and can be calculated for Propofol [9],
[10]:

V1 = 4.27[l] V3 = 2.38[l]
V2 = 18.9− 0.391 · (age− 53)[l]
Cl1 = 1.89 + 0.0456(weight− 77)− 0.0681(lbm− 59)+
+0.0264(height− 177)[l/min]
Cl2 = 1.29− 0.024(age− 53)[l/min]
Cl3 = 0.836[l/min]
k10 = Cl1

V1
[min−1]; k12 = Cl2

V1
[min−1]; k13 = Cl3

V1
[min−1]

k21 = Cl2
V2

[min−1]; k31 = Cl3
V3

[min−1]
ke0 = 0.456[min−1]

(2)
where Cl1 is the rate at which the drug is cleared from
the body, and Cl2 and Cl3 are the rates at which the drug
is removed from the central compartment to the other two
compartments by distribution. Similarly, for Remifentanil
[18]:

V1 = 5.1− 0.0201(age− 40) + 0.072(lbm− 55)[l]
V2 = 9.82− 0.0811(age− 40) + 0.108(lbm− 55)[l]

V3 = 5.42[l]
Cl1 = 2.6 + 0.0162(weight− 40)− 0.0191(lbm− 55)[l/min]

Cl2 = 2.05− 0.0301(age− 40)[l/min]
Cl3 = 0.076− 0.00113(age− 40)[l/min]

k10 = Cl1
V1

[min−1]; k12 = Cl2
V1

[min−1]; k13 = Cl3
V1

[min−1]

k21 = Cl2
V2

[min−1]; k31 = Cl3
V3

[min−1]
ke0 = 0.595− 0.007(age− 40)[min−1]

(3)
The lean body mass (lbm) for men and for women have

the following expressions:

lbmm = 1.1 · weight− 128 · weight2

height2

lbmf = 1.07 · weight− 148 · weight2

height2

(4)

respectively.
The BIS variable can be related to the drug effect concen-

tration Ce by the empirical static but time varying nonlinear
relationship, called also the Hill curve [7]:

BIS(t) = E0 − Emax · Ce(t)γ

Ce(t)γ + Cγ
50

(5)

where E0 denotes the baseline (awake state - without drug)
value, which, by convention, is typically assigned a value
of 100, Emax denotes the maximum effect achieved by
the drug infusion, C50 is the drug concentration at half
maximal effect and represents the patient sensitivity to the
drug, and γ determines the steepness of the curve. Some
typical parameters extracted from medical expertise can be
found in [5], [6], [22].

As explained earlier, the main challenge for control stand-
point is the nonlinearity of the Hill curve given by (5)
and the inherent inter-patient variability. To illustrate this
to the reader, a realistic set of typical and atypical patients
has been used, with the parameter values given in [22], as
extracted from medical expertise. The resulted Hill curves
by simulating the PKPD model of these patients is shown in
figure 3.

Fig. 3. Example of Hill curves from various patients.

IV. EFFECT TO DRUG CONCENTRATION RELATION

Pure empirical models such as input - output models are
rather descriptive with loss of physiological insight into the
drug absorption, transport, diffusion and release. However,
from the control point of view they are the easiest to obtain
and to deliver information to the controller for deciding the
optimal drug infusion rate necessary for the specific patient
whose model is available. On the other hand, physiologically
and bio-chemically based models are difficult to attain due to
the extraordinary complexity of this process. An intermediate
solution is perhaps the use of semi-empirical models [23].
Such a model which is fairly simple to employ in character-
izing drug release is the power-law model:

Mt

M∞
= ktn (6)

where Mt and M∞ are cumulative amounts of drug released
at time t and infinite time, respectively; and k is a constant
reflecting the structural and geometrical characteristics of the
system, and n is the so-called ”release exponent” [24]. For



purely diffusion-controlled release, n = 0.5. other values of
n may be indicative of various diffusion conditions. These
features of this model are of special interest in our study
since we would like to look at the inter-patient variability
from this standpoint.

Following the fundamental law of physics which applies to
well stirred, homogeneous systems, it follows that the mean
square displacement of the walker, < x2 > in the random
walk model is proportional to time [23], [25]:

< x2 >∝ t (7)

However, in disordered systems, such as most biological
environments, this is no longer proportional with time, but
with the fractal walk dimension of the walker:

< x2 >∝ tDw (8)

with Dw �= 2. This property implies that scaling laws
such as power laws are associated with kinetics of various
processes taking place in the (biological) environment (i.e.
tissue). Most biological tissues can be approximated in their
properties by polymers. As such, the spatio-temporal porosity
of a dynamically changing polymer is close to the percolation
threshold for non-classical diffusion effects impinging on
release kinetics.

Fractional calculus has shown in several (non)biological
applications that classical diffusion as well as non-classical
diffusion can be characterized by fractional order differ-
integrals models [26]. It is possible to derive further the
model from (6) in its Laplace equivalent, as indicated in [27].
This result has regained the attention of the research commu-
nity and current efforts are being directed towards providing
pharmacokinetic models with fractional order differ-integrals
[11], [28], [29], [30], [31], [32], [33], and their equivalent
Laplace models of non-integer order, coined in the literature
as FOIMs (fractional order impedance models) [34].

V. PROPOSED VIEW ON PATIENT MODELS

A. Emerging PK models

Figure 4 presents a similar scheme as that from figure 2
for the PK model introduced in this section.

Fig. 4. Three-compartment model representing the basic pharmacokinetic
processes that occur after intravenous drug administration. U, dosing scheme
as a function of time; k01, rate constant reflecting all processes acting
to irreversibly remove drug from the central compartment; K12, K13,
K21, K31 and K1e represents the intercompartmental rate constants; V1,
represents the volume of the central compartment, V2 and V3 represents the
volume of the peripheral compartments (muscle and respectively fat).

The pharmacokinetic model used in practice for drug
concentration prediction is citedoko,doko1,popovic:

q̇1(t) = K21q2(t) +K31q3(t)−K12q1(t)
−K13q1(t)−K01q1(t)−K1eq1(t) + U(t)

(9)

q̇2(t) = K12q1(t)−K21q2(t)−K02q2(t) (10)

q̇3(t) = K13q1(t)−K31q3(t)−K03q3(t) (11)

q̇e(t) = K1eq1(t)−K0eqe(t) (12)

where: q1, q2 and q3 [mg] denotes the amount of drug in the
three compartments and V 1, V 2 and V 3 represents the vol-
ume in the three compartments. The drug concentration in the
blood is expressed by q1/V 1, respectively q2/V 2 and q3/V 3
for compartment 2 and 3. The peripheral compartments 2
(muscle) and 3 (fat) models the drug exchange of the blood
with well and poorly diffused body tissues. The parameters
Kij for ij, denote the drug transfer frequency from the i-th
to the j − th compartment and U(t) [mg/s] is the infusion
rate of the analgesic drug into the first compartment. The
parameters Kij of the PK models depend on age, weight,
height and gender and can be calculated for Propofol as in
[32], [33].

Standard arguments imply that the equations which are
determined by the mass balance in compartments have the
following form [29], [30].

τn1−1
1 Dn1q1(t) = K21q2(t) +K31q3(t)
−K12q1(t)−K13q1(t)−K1eq1(t)−K01q1(t) + U(t)

(13)

τn2−1
2 Dn2q2(t) = K12q1(t)−K21q2(t)−K02q2(t) (14)

τn3−1
3 Dn3q3(t) = K13q1(t)−K31q3(t)−K03q3(t) (15)

τne−1
e Dneqe(t) = K1eq1(t)−K0eqe(t) (16)

Dividing equations (13)-(16) by τni
i and redefining the

constants we obtain the following fractional order differential
equations.

Dn1q1(t) = k21q2(t) + k31q3(t)− k12q1(t)−
−k13q1(t)− k1eq1(t)− k01q1(t) + U(t)

(17)

Dn2q2(t) = k12q1(t)− k21q2(t)− k02q2(t) (18)

Dn3q3(t) = k13q1(t)− k31q3(t)− k03q3(t) (19)

Dneqe(t) = k1eq1(t)− k0eqe(t) (20)

where: τi represents the characteristic time of the i − th
compartment, expressed in seconds. i = 1, ...., n and Kij ,
for i, j = 1, ...., n are standard diffusion coefficients having
the dimension 1/s, n1 = n2 = n3 = n and the constants
were redefined according to relation (21). The introduction
of τi leads to the dimensional homogeneity of fractional rate
equations.

kij =
Kij

τn1−1
i

(21)



Where kij are the constants depending on the rate of
absorption, elimination, tissue take up, characteristic
and inactivation of drug. One of the characteristic of
fractional derivatives is the ”memory effect” term. It is
well known that the state of many systems (biological,
electrochemical, viscoelastic, etc.) at a given time depends
of their configuration at previous time [29], [31].

This model has been successfully validated in simulations
with values resulted from medical expertise against the
classical model from (1) in [32], [33].

B. Emerging PD models

Based on (6) one can write the same relationship for the
Hill curve [7], [35], [36]:

Ce(t)

BIS(t)
= k · tn (22)

where k and n are varying on the patient PK-PD character-
istics. If one compares (6) with (22) it can be recognized
the resemblance in the power term and observe in fact a
simplification of the model from (5) in terms of number of
model parameters. From a structural point of view, there is no
difference between the models, since both are semi-empirical
models. The term Ce(t)

BIS(t) denotes the concentration-to-effect
ratio (CER) and its units are [mg/ml/%].

In order to verify the validity of the above assumptions, a
simulation study has been performed. Values for the effect
site concentration Ce(t) have been given in the range from
0.01 − 20 mg/ml, in a linear distribution of 2000 points.
BIS(t) has been calculated with parameters from [22] and
formula (5). The purpose of k is that of a scaling factor,
hence a common value has been identified for patients #3,
#6 and #9 from figure 3: 5.45. The identified values for the
parameter n in the same patients are n = 3.88, n = 2.72
and n = 4.45, respectively. For the values of the γ parameter
which delivers the Hill curves in figure 3 we observe that
patients #6 and #9 have the the highest and the lowest values.
We correlate this observation with the values identified for
the n parameter and hence we may conclude that the n
parameter holds a similar significance in (22) as that of the
γ parameter in (5).

The results of the identification with the new PD model
from (22) for the three simulated patients are given in figure
5.

VI. CHALLENGES AND CONCLUSIONS
It is obvious that i) closed loop control is necessary

and ii) an averaged patient model will deliver sub-optimal
results since they require a robust, conservative controller
able to deal with the inter-patient variability. Moreover, it
is also clear that the inter-patient variability may vary quite
significantly and that one single controller (without online
adaptation) will never suffice in practice.

A first problem is to find online adaptation algorithms
which may adapt the model parameters k and n to the patient

Fig. 5. Result of identification for a selection of three outlier patients.

characteristics. Identification from logarithmically sampled
data has been proposed in [37] and represents a good
framework for developing the online identification algorithm.

The next problem is to find a solution to integrate the
model from (22) into a closed loop control system taking
into account the requirement for a logarithmic sample time
(i.e. in order to maintain linearity). Although it may look
suprisingly, it has already been shown in various examples
that a Riemann sampling rate (i.e. linear periodic) may
be outperformed by a Lebesque sampling rate (i.e. event-
triggered) in several applications [38]. Since the Lebesque
sampling rate is an event trigerred rate used successfully
in practice in closed loop control (e.g. networked control,
sensor networks), it may be revealing to look into the
possibility of a logarithmic sampling rate.

This paper presented the available tools emerging from
fractional calculus to model the nonlinear characteristics of
the pharmacokinetic and pharmacodynamic patient models.
Advantages and challenges have been discussed. Results
suggest that the high degree of inter-patient variability and
nonlinearity may be avoided, leading to linear control tech-
niques instead of advanced, complex control techniques.

Further steps of this research line are dealing with the
current limitations: i) online identification of logarithmically
sampled data and ii) control of logarithmically sampled
systems.
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