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Abstract—Cognitive radio (CR) systems require flexible and
adaptive implementations of signal processing algorithms. An
adaptive symbol detector is needed in the baseband receiver
chain to achieve the desired flexibility of a CR system. This
paper presents a novel design of an adaptive detector as an
application-specific instruction-set processor (ASIP). The ASIP
template is based on transport triggered architecture (TTA). The
processor architecture is designed in such a manner that it can
be programmed to support different suboptimal multiple-input
multiple-output (MIMO) detection algorithms in a single TT A
processor. The linear minimum mean-square error (LMMSE)
and three variants of the selective spanning for fast enumera-
tion (SSFE) detection algorithms are considered. The detection
algorithm can be switched between the LMMSE and SSFE
according to the bit error rate (BER) performance requirement
in the TTA processor. The design can be scaled for different
antenna configurations and different modulations. Some of the
algorithm architecture co-optimization techniques used here are
also presented. Unlike most other detector ASIPs, high level
language is used to program the processor to meet the time-
to-market requirements. The adaptive detector delivers 4.88 -
49.48 Mbps throughput at a clock frequency of 200 MHz on 90
nm technology.

I. I NTRODUCTION

Cognitive radio (CR) systems have been proposed to effi-
ciently use the available radio-frequency spectrum. The basic
functions of the cognitive radio are the ability to sense the
environment, the capacity to learn and the ability to adapt
within any layer of the radio communication system [1]. The
adaptivity becomes more challenging for the physical layer
implementation in the mobile devices. The physical layer
algorithms implemented for the mobile device are typically
embedded in the printed circuit board (PCB) as fixed hardware
accelerators. The fixed hardware implementations provide high
data rate, use less logic gates and consume less power. The
drawback of the fixed hardware implementation is that it
operates on a fixed set of parameters only and it is very
difficult to modify the design in the future. Therefore, the
hardware accelerators are not the best choice for CR systems
where flexibility is a key requirement. To solve this flexibility
problem, it is possible to have different hardware accelerators
to support different modes and different parameters, but the
PCB size can become too large to accommodate all the
accelerators. Another solution is to implement the adaptive
algorithms as software to program the digital signal processor
(DSP) chip of the mobile devices. At first sight, the software

implementation is ideal for CR systems because they pro-
vide flexibility, where the parameters and the algorithms are
changed by software. However, the problem in DSPs is the
inability to achieve a high throughput, as their architectures
are fixed and not tailored for any particular algorithm. The
programmable architectures that are customized for a small
set of algorithms can be the ideal choice for CR systems.
The software-hardware codesign method, which is used for
the programmable architectures. They provide not only the
required flexibility for adaptive algorithms, but also a higher
throughput than the pure software solutions. In this paper,
we present an implementation of an adaptive detector as a
customized programmable processor.

An adaptive detector for multiple-input multiple-output
(MIMO) system selects the detection mode based on the
channel estimation. The idea was proposed by Onggosanusiet

al. [2]. The adaptive detector contains different detectors with
different complexities and bit error rate (BER) performances.
The complex detectors are used for ill-conditioned channels
and the simple ones for good channel conditions. The detection
algorithm is changed based on a metric computed from the
channel matrix. This metric can be the condition number
of the channel or the distribution of the channel correlation
[2]. The linear minimum mean-square error (LMMSE) and
three variants of the selective spanning for fast enumeration
(SSFE) detection algorithms are considered. The LMMSE
filters can be used when the channel condition is good or low
correlated channels. The SSFE forms a class of tree search
algorithms that provides a feasible implementation complexity
for moderately correlated channels [3].

The LMMSE and SSFE hardware implementations are at
a mature stage and different implementations can be found
in [4] and [5]. A unified hardware solution for both LMMSE
and SSFE is difficult to implement. Typically, for an adaptive
detector, the LMMSE and SSFE are implemented separately
and used with a multiplexer to change between the algorithms
when needed. We take different approach and design a unified
programmable processor that supports both the LMMSE and
SSFE realizations. The processor is based on the transport
triggered architecture (TTA) paradigm. TTA is a processor
design philosophy where the programmer can control the
internal data transports between different function unitsof the
processor [6]. Unlike the traditional processors, TTA exploits
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the instruction level parallelism (ILP) by processing several
instructions in a single clock cycle. The TTA based codesign
environment (TCE) tool is used in this work to design the
processor. TCE enables the designer to write an application
with a high level language and design the target processor ina
graphical user interface at the same time [7] [8]. The processor
is programmed with C language to shorten the time-to-market.
The processor achieves 4.88 - 49.48 Mbps throughput at a
clock frequency of 200 MHz on 90 nm technology.

The rest of the paper is organized as follows: In Section II,
the system model is explained. The simulation parameters and
the error rate figures are also presented. In Section III, a brief
discussion of LMMSE, SSFE and their usage in the adaptive
detector is explained. Section IV presents the top level TTA
processor architecture and programming techniques. In Section
V, the performance of the implementation and the discussion
is presented. The conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a MIMO system with orthogonal frequency-
division multiplexing (OFDM) with N transmit antennas,
which are sending data over the channel, andM receive
antennas such thatN ≥ M . A layered space-time architecture
with horizontal encoding is applied in the transmitter. Two
streams of data bits are encoded separately according to the
3GPP Long Term Evolution (LTE) standard. The two streams
of the encoded data bits are interleaved and multiplexed onto
four antennas. The encoded bits are modulated to symbols
with quadrature amplitude modulation (QAM). Bit interleaved
coded modulation (BICM) is applied and data is transmitted
over the channel via different antennas. A block diagram of
the system model is presented in Fig. 1.

Fig. 1. The system model.

The received signal is composed of the multiplication of the
complex channel matrix with the transmitted symbol vector
distributed by additional white Gaussian noise caused by the
channel. The received signaly can be represented as

y = Hx+ n, (1)

where y ∈ CM is the received signal vector,x ∈ CN is
the transmit symbol vector andn ∈ CM is the circularly
symmetric complex white Gaussian noise vector with zero
mean and varianceσ2. The (n,m)th componenthm,n of the

channel matrixH ∈ C
M×N is the channel coefficient from

thenth transmit antenna to themth receive antenna.
Soft detection is applied in the receiver to detect the

transmitted signal. The LMMSE and SSFE algorithms with the
spanning vectors [11111111], [11111222] and [11112223] are
used for the detection. Those detection schemes are explained
in Section III in more detail. Turbo coding is used as the
forward error correction (FEC) scheme.

A similar scenario is simulated with a link level Matlab
simulator. SSFE and LMMSE detectors are applied to a4× 4
system. The modulation method used for both detectors are
16-QAM and 64-QAM. A 5 MHz bandwidth corresponding to
512 OFDM subcarriers is considered. Each SNR point consists
of 3360 OFDM symbols. One OFDM symbol consists of 512
subcarriers where 300 subcarriers are loaded with data and the
rest are used as a guard interval. In the simulation, the mobile
velocity is set to 3 kmph and the turbo decoder performs 6
iterations. The typical urban (TU) channel model with base
station (BS) azimuth spread of 2 or 5 degrees is applied in
the simulator. A list of the parameters for the simulations are
presented in Table I.

TABLE I
SIMULATION AND CHANNEL MODEL PARAMETERS

Number of subcarriers 512 (300) active
Channel coding Turbo Coding

Coding Rate 1/2
Symbol duration 71.39µ s

Symbol time 66.7µ s
Cyclic prefix duration 4.69µ s

Modulation 16 QAM and 64 QAM
user velocity 3 kmph

Channel model TU
Number of paths 6

path delays [0 ... 2510] ns
path power [0 ... -20] dB

BS azimuth spread 2◦ / 5◦

MS azimuth spread 35◦

The BER results of the above mentioned detectors are
shown in Figs. 2 - 4. The detectors are simulated in an
uncorrelated channel with 64-QAM are considered in Fig.
2. It can be observed that the LMMSE and the SSFE with
spanning vector [11111222] exhibit performance similar to
each other. Therefore, the detector with the lowest complexity,
i.e. LMMSE, can be used. The SSFE [11111111] can be used
if the BER requirement is relaxed.

In Fig. 3, the detectors are simulated for a moderately
correlated channel for 16-QAM and 64-QAM. For 64-QAM,
LMMSE and SSFE [11111111] require a SNR beyond 30
dB which is impractical. Therefore, SSFE [11111222] and
[11112223] have to be used for 64-QAM and a moderately
correlated channel. The same statement is true for SSFE
[11111222] and SSFE [11112223] for 16-QAM.

In Fig. 4, the detectors are simulated for a highly correlated
channel for 16-QAM. For 64-QAM, all of the detectors work
only beyond 30 dB. The LMMSE and SSFE [11111111]
exhibit very high SNR requirements even for 16-QAM. There-
fore, SSFE [11111222] and SSFE [11112223] can only be



used for highly correlated channel with 16-QAM. The BER
result is helpful to determine the algorithm to be used for
the adaptive detector for a specific set of parameters. More
simulation results can be found in [9].

18 20 22 24 26

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 

LMMSE
SSFE 11111111
SSFE 11111222
SSFE 11112223

Fig. 2. Detector performance in an uncorrlated channel.
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Fig. 3. Detector performance in a moderately correlated channel.

III. D ETECTION SCHEMES

The function of the MIMO detector is to estimate the
transmitted signal vectorx ∈ C

N and to feed the soft output to
the decoder. Maximum likelihood (ML) detectors are optimal
detectors. The ML detector calculates the Euclidean distances
between received signaly and lattice pointsHx and selects
the closest lattice point. To find the closest lattice point,the
ML detector selects that particular lattice point for whichthe
Euclidean distance is minimum, i.e.,

x̂ML = arg min
x∈ΩΩΩM

‖ y −Hx ‖22 . (2)

ML detection algorithm is complex to implement as hard-
ware. Therefore, some suboptimal detectors like LMMSE or
zero-forcing (ZF) are used instead of the optimal detector.
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Fig. 4. Detector performance in a highly correlated channel.

However, generally, these linear detectors do not perform close
to the optimal ML detectors. Equation (2) can also be solved
by constructing a spanning-tree. The spanning tree consists of
N+1 levels and in each level the several child nodes come
out from the father node depending on the constellation size.
Different classes of tree search algorithms are proposed in[3]
[10] performing near to the optimal detectors but are more
complex than the LMMSE or ZF detectors.

A. Linear Minimum Mean Square Error

The LMMSE detector minimizes the mean square error
between the transmitted signal vectorx and the soft output
vector x̃. The LMMSE detector can be calculated as

W = (HHH+ σ2IM )−1HH. (3)

whereH ∈ CM×N denotes the channel matrix,σ2 denotes
noise variance andIM is the M × M identity matrix. The
output of the LMMSE detector can be calculated as

x̃ = Wy. (4)

The inversion required in the above equation becomes quite
complex for higher number of antennas. Typically, the channel
matrixH is QR decomposed into two parts asH = QR. Here
Q ∈ C(M×M) denotes a unitary matrix andR ∈ C(M×M)

denotes an upper triangular matrix. The QR decomposition
is necessary for the tree search detection algorithms and the
inversion of an upper triangular matrix is simpler than a dense
matrix.

The QR decomposition is slightly modified for the LMMSE
filter. The additive noise is taken into account by considering
an extended channel matrixH [11].

H =

[

H

σIN

]

= QR =

[

Q1

Q2

]

R (5)

Here, Q ∈ C(N+M)×N matrix is composed ofQ1 ∈

C(M×N) andQ1 ∈ C(M×N). R ∈ CN×N denotes an upper
triangular matrix and invertible with less complexity.



The LMMSE detector is then obtained from,

W = R−1QH . (6)

B. Selective Spanning with Fast Enumeration

SSFE is a breadth-first tree-search detection algorithm that
has a regular and deterministic dataflow which makes it
suitable for programmable architectures. In a traditionaltree
search algorithm, the number of child nodes that spans each
level depends on the constellation size. The most likely
candidate nodes are kept and the rest are deleted in each
level. Therefore, the sorting and deleting process makes the
traditional tree search algorithm complex. The SSFE can be
characterized with a spanning vectorm = [m1,m2, ....,mN ].
The spanning vector indicates the number of child nodes that
span from the parent node in each level. On the other hand the
nodes are never deleted. Therefore, the traditional sorting and
deletion is not present in the SSFE algorithm, which reduces
the algorithm complexity.

Fig. 5. Topology of the SSFE algorithm.

The topology of the SSFE search tree for a level update
vector [1223] is shown in Fig. 5. The level update vector
indicates that three nodes are coming out from the parent node
at the root level. Therefore, level 4 has three candidates. The
next value of the level update vector specifies that two child
nodes are connected to each parent node from level 4. In the
end, there are 12 candidate nodes. A compromise between
the complexity and the BER performance can be achieved by
carefully choosing the level update vector.

C. Adaptive Detector

The block diagram of the MIMO baseband receiver with
the adaptive detector is presented in Fig. 6. The detector
needs an estimate of the channelH which is obtained by
the channel estimator. The output of the channel estimator
is fed to the detector selection block, which computes either
the condition number of the channel or the distribution of
the channel correlations, and selects the suitable detection
algorithm from these values. The detector selection is updated
periodically and the detection algorithm is changed according
to the channel condition. In Fig. 6, only the LMMSE and
the SSFE detection algorithms are shown as we restricted our

attention to these algorithms in this work, but other algorithms
can also be employed.

Fig. 6. Block diagram of a receiver with adaptive detector.

IV. TTA PROCESSOR FORADAPTIVE DETECTION

A fixed point TTA processor is designed to support the
LMMSE and the three variants of SSFE algorithm. The QR
decomposition and the detector selection logic implementation
is not considered in this work. A part of the processor designed
is illustrated in Fig. 7. For readability, the whole processor
is not given in the figure. The blocks in the upper part of
the figure represent the function units and register files of
the processor. The black horizontal straight lines represent
the buses of the processor. The vertical rectangular blocks
represent the sockets. The connection between function units
and buses is illustrated by black spots in the sockets.

The processor includes load/store unit (LSU), arithmetic
logic unit (ALU), global control unit (GCU) and register files.
Based on the resource requirements in the high level language,
more function units and register files are added.

The log-likelihood ratio (LLR) inputs are read from a first-
in-first-out (FIFO) memory buffer by using the function unit
called STREAM. The STREAM units can read every input
sample in one clock cycle. Eight STREAM units are used to
get the input LLRs simultaneously. The STREAM units are
used to implement the sliding window technique that helps
to decode the input block in smaller parts parallely. One
STREAM unit is used to write the output LLRs in the memory
buffer.

A single cycle special function unit (SFU) slicer is designed
to accelerate the program execution. The slicer compares two
values and returns constant values defined by the modulation
order. The designed slicer SFU takes two inputs which are the
value needed to be sliced and the number of nodes. The slicer
has three outputs indicating that three best symbol candidates
will be returned. In the real valued signal model, 16-QAM and
64-QAM have four and eight symbol candidates respectively,
but the level update vector used in this work restricts this to
a maximum of three candidates.

One LSU unit is used to support the memory accesses. The
LSU units are used to read and write memory. The memory
can be read in three clock cycles and can be written in a
single cycle. The ALU unit is used to perform the basic



Fig. 7. Implemented processor with reduced number of function units.

arithmetic operations like addition, subtraction etc. Operations
like shifting right or left are also included in the ALU.

Twenty five buses are used in the design. Several register
files are used to save the intermediate results. In terms of
power consumption, registers can be more expensive than the
memory, but to meet the latency requirements register files
are needed. A single Boolean register file is included in the
processor design.

The processor is programmed with a high level language
C. Macros are used to call the special function units. SSFE
with m = [11111111] is written without any loop in C. In each
level only one symbol candidate and the euclidian distance is
calculated. The only difference between the SSFE variants is
the amount of input data and multiplications increase when
the tree goes to the next level. Therefore, the data needed for
the next level is read beforehand in an earlier stage when the
STREAM unit is idle. For example, The value of theR(8, 8)
is needed in the first stage and the values ofR(7, 7) and
R(7, 8) are needed in the next stage. Therefore, after reading
theR(8, 8) needed for the first stage, the next values are being
read with the same STREAM unit while the other operations
are being executed in parallel. In each level only one slicing
operation is needed. Therefore, no parallel operation of slicer
is needed in this mode.

In case of SSFE with m = [11111222] and m = [11112223]
the input data is read in the same way. Several slicing
operations are done in parallel with different SFUs using
marcos. Some of the loops are unrolled to avoid unnecessary
calculations.

It can be seen from (5) that LMMSE requires a matrix
inversion and matrix multiplication. The inversion of the upper
triangular matrix,R is written in C following the algorithm
proposed in [12]. The nested loops are converted to single
loops so that the compiler can easily parallelize the operations.
The slicer is not used in the case of LMMSE.

V. RESULTS AND DISCUSSION

The designed processor takes 97 clock cycles to process one
symbol vector for4×4 antenna configuration and 64 QAM for
SSFE with level update vector [11111111]. The throughput for

the SSFE with a clock frequency of 200 MHz can be calculated
as,

Throughput=
4 × 6× 200 MHz
97 clock cycles
= 49.48 Mbps.

TABLE II
NUMBER OF CLOCK CYCLES FOR A SINGLE ITERATION WITH THREE

SIMULATION BLOCKS

Modes Algorithm Clock Cycle Throughput
1 SSFE [11111111] 97 49.48 Mbps
2 LMMSE 203 23.64 Mbps
3 SSFE [11111222] 408 11.78 Mbps
4 SSFE [11111223] 982 4.88 Mbps

It can be seen from Table II that the processor takes
more clock cycles for SSFE [11111222] and [11112223].
Theoretically, these two modes need a lot more calculation
than LMMSE or SSFE [1111111]. For the SSFE methods, the
data dependency in each level increases the number of clock
cycles. Some of the operations during the algorithm execution
are summarized in Table III.

TABLE III
NUMBER OF OPERATIONS

Operation [11111111] LMMSE [11111222] [11112223]
ADD 28 173 318 544

SLICER 8 0 47 69
MUL 52 140 363 612

STREAM 91 91 91 91
LDW 7 84 255 138
STW 8 65 72 184

The number of addition operations does not only include
the additions for the algorithm, but for several other purposes
like loop indexing for the code. The number of multiplications
is high for SSFE [11111222] and SSFE [11112223] as the
number of symbol candidates are also higher in these modes.
The higher number of memory accesses cannot be avoided
with a processor that uses simple function units because the
LSU has to continuously access theR matrix or y vector.



The euclidian distance calculation is also a recursive process.
Hence, the earlier euclidian distance needs to be stored in the
memory also.

A comparison with different other implementations is pre-
sented in Table IV. The results are normalized for the clock
frequency of 200 MHz. In [3] and [13] the results are
presented for a2 × 2 antenna configuration based on a
software programmable solutions. As such, their throughput
is lower than the implementations presented in this work. The
implementation presented in [14] provides a higher throughput
than this work. However, the architecture is fully optimized
for that particular level update vector only. Furthermore,the
processor is programmed with assembly language. The work
presented in this paper provides comprehensive results with
different level update vectors for4× 4 with high throughput.
In addition, the architecture can support LMMSE to meet the
requirements of an adaptive detector.

The processor is designed with simple function units like
adders and multipliers which can be used for any algorithm.
The slicer unit is used for SSFE only and cannot be used by
other algorithms. A more general SFU for LMMSE and SSFU
can be implemented to accelerate both algorithms.

TABLE IV
IMPLEMENTATION COMPARISON

Reference Architecture m vector Throughput (norm.)
[3] TMS320C6416 [1,1,1,1] 25.05 Mbps
[13] GPU [1,1,4,4] 11.09 Mbps
[14] TTA [1,1,1,1,1,2,2,2] 48.5 Mbps

Proposed TTA [1,1,1,1,1,1,1,1] 49.48 Mbps
Proposed TTA [1,1,1,1,1,2,2,2] 11.78 Mbps

The detector selection can be done following the simulation
results of Figs. 2 - 4 and Table II. The detector selection
unit of the adaptive detector can choose LMMSE over SSFE
[11111222] for an uncorrelated channel. In case of a mod-
erately correlated channel and 16 QAM configuration, SSFE
[11111222] can be chosen over SSFE [11112223] as they
provide nearly the same BER performance. The same can be
said about LMMSE and SSFE [11111111]. For 64 QAM, the
difference between SSFE [11111222] and SSFE [11112223]
is nearly 2 dB. Therefore, depending on the BER requirement
either of the modes can be chosen.

VI. CONCLUSION

This paper describes a novel design of an adaptive detector
on a TTA processor using high level language. The adaptive
detector implementation is necessary for the physical layer of
the cognitive radio systems. Different detectors are simulated
on a Matlab link level simulator. The design is then converted
in C language and mapped on the TTA processor using
the TCE tool. The processor provides more flexibility than
most of the other detector implementations available. It is
possible to reach the LTE target throughput with deep deep
submicron technologies (DDSM), i.e. 65 nm or below. The
target throughput could also be reached by multi-core TTA

processor. The energy efficiency of the processor would also
provide interesting result.
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