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Abstract

Introduction. Computed tomography (CT) is the standard imaging modality for radiation
therapy treatment planning (RTTP) because of its ability to provide information on electron
density. However, magnetic resonance (MR) imaging provides superior soft tissue contrast,
especially in small animal imaging, facilitating the precise selection of the target volume. This
makes the technique interesting for irradiation of brain tumors. The aim of this study was to
present an MR-only based workflow for RTTP on a small animal radiation research platform
(SARRP) by investigating the potential of probabilistic classification of voxels using multiple MR
sequences.

Methods. Six female Fisher rats were anesthetized using isoflurane and individually fixed on an
in-house made multimodality bed before starting MR and CT acquisitions. MR measurements
were performed on a 7-Tesla system using a rat brain volume coil. Four different MR sequences
were acquired for each animal, including a T1-weighted (MDEFT) sequence, a T2-weighted
(RARE) sequence, an ultra-short echo time sequence with 20 ps echo time (UTE1) and an ultra-
short echo time sequence with 2 ms echo time (UTE2). UTE offers the opportunity to acquire
images from proton-poor structures with very short transverse relaxation times, such as bone, by
using a rapid readout of the fast decaying signal. Following MR, the animals were moved to the
SARRP to start a cone-beam CT (CB-CT) by acquiring 720 projections over 360°. Cone-beam CT
projection data were reconstructed by filtered back-projection to obtain the standard-CT for
RTTP. Then the images were bias field corrected and manually co-registered to the CB-CT. After
that, images were segmented in three tissue classes (air, soft tissue and bone) with k-means for
the CB-CT and fuzzy c-means segmentation algorithm (FCM) for the MR images with multiple MR
images as input. The membership probability can be between 0 and 1, with one indicating 100%
probability and zero indicating 0% probability to belong to a specific tissue class. To obtain a
pseudo-CT image, voxels were assigned to the tissue class having the highest membership
probability. The dice coefficient was used to evaluate the correctness of the segmentation for
soft-tissue and bone. The pseudo-CT images with the highest similarity index were used for
further radiotherapy treatment planning (RTTP), in addition, to the standard UTE1-UTE2. The
target of the RTTP that was selected in the primary cortex (M1) and three different beam
arrangements were investigated to compare CB-CT and MR-based dose calculations. The dose
plans were a single static beam of 3x3 mm, using a single arc (3x3 mm beam size, 120° arc, couch
at 0°), and three non-coplanar arcs (3x3 mm beam size, 120° arc, couch at 0°, 45° and 90°). Dose
distributions were calculated using the TPS of the SARRP and cumulative dose volume
histograms (DVHs) of the target and normal brain tissue were obtained for the three dose plans.

Results The highest dice coefficient was obtained for the T1-UTE1-T2 combination, which was
used for further RTTP. The contribution of bone to the total dice coefficient did not exceed 27%.
However, bone accounts for only 2% of the image, therefore a misclassified bone pixel has a
bigger effect in the dice coefficient than a misclassified soft tissue pixel. Using only 1 beam, both
MR combinations underestimate the dose to be delivered to the target. When more complex
beam configurations were used to irradiate the target, very small differences were observed
between CB-CT and MR based dose calculations.
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Conclusion We presented an MR-only based workflow for RTTP on a small animal radiation
research platform that enables both accurate organ delineation and accurate dose calculations
using multiple MR contrasts. The proposed method can be very useful when the therapeutic dose
has to be delivered in multiple fractions spaced over time, where the cumulative radiation dose
of the CT might influence the outcome of a study.

Introduction

For many decades, animal radiation studies were mostly performed using fairly
crude experimental setups with radiation fields that did not conform to the
target only. Commonly, these experiment were done on devices intended for
human patient use and the radiation sources employed were often producing
megavoltage (MV) x-rays. MV x-rays have several characteristics that are
unsuitable for irradiating small targets in small animals [1]. An MV photon beam
exhibits dose build-up at the air-tissue interface in the entrance region of the
beam. The extent of this build-up region corresponds roughly to the order of the
animal size itself. This makes it very challenging to deliver a uniform dose to a
tumor. Another issue is the beam penumbra, which for MV photon beams may
extend several millimeters beyond the target, leading to unacceptable dose
distributions in small structures. To avoid dose build-up and to obtain extremely
sharp penumbras, the use of kilo-voltage (kV) photon beams is required. As a
result, efforts were directed towards the development of precise micro-
irradiators for small animals [1-3]. These devices are using kV x-ray radiation
sources, which combine small animal irradiation with high-resolution cone-
beam (CB) computed tomography (CT), as the latter allows accurate beam
positioning and dose calculations [4,5]. Although kV-based micro-irradiators
have significantly reduced the technological gap between laboratory radiation
research and human treatment methods, CB-CT is hampered by extremely low
soft-tissue contrast [6] making accurate target selection very difficult. Current
research supports the evidence that magnetic resonance (MR) imaging adds
valuable information to CT and that it can improve the accuracy of radiotherapy
treatment planning (RTTP) [7]. Compared to CT, MR images provide vastly
superior soft-tissue contrast, especially in small animal imaging. This makes it
much easier to visualize lesion boundaries, which should allow a much better
delineation of the target volume, helping to better irradiate the lesion and avoid
surrounding tissue. However, MR images cannot be used for dose planning, as
they do not provide the required electron density information. As a result co-
registration of MR with CT data has become a standard treatment planning
procedure in the clinic. Ideally, the complete treatment planning process should
rely solely on the information obtained from MR imaging. Using such an MR-only
based workflow, the CT acquisitions and the image co-registration process
would become redundant. This would significantly reduce the radiation dose to
non-target areas, which might become important when delivering the
therapeutic dose in multiple fractions spaced over time [8], and the errors
associated with the image co-registration process would be avoided.

The aim of this study was to implement an MR-only based workflow for RTTP on
a small animal radiation research platform (SARRP) that enables both accurate
organ delineation and accurate dose calculations. Pseudo-CT images derived
from MR data will be generated to obtain the required electron density



information for dose calculations. To convert MR images into a pseudo-CT scans,
the MR volume needs to be segmented into a limited number of tissue classes,
and electron density values have to be assigned to these classes to override their
default MR values. However, tissue segmentation in MR imaging is far from
trivial. Conventional MR sequences provide no signal in lungs and bone, caused
by the low proton densities and very short transverse relaxation times of these
tissues. As a result, there is no contrast between air, lung and bone. To solve this
problem, novel MR sequences have been implemented that acquire the MR signal
directly after radio-frequency excitation, such as the ultra-short echo time
sequence (UTE). The extra information provided by this sequence can be used to
facilitate the conversion of MR images into a pseudo-CT [9,10]. We will
investigate the potential of probabilistic classification of voxels by acquiring
multiple MR sequences [11]. To our knowledge, this is the first study that
investigates the use of an MR-only based workflow in pre-clinical RTTP.

Material and Methods

Animals

All animals were treated according to guidelines approved by the European
Ethics Committee (2010/63/EC) and approved by the Animal Ethical Committee
of Ghent University (ECD 12/28-A1). Six adult female Fisher rats (weight
174+7g) were purchased from Charles River (Neder-over-Heembeek, Belgium).
The animals were kept under environmentally controlled conditions (12h
normal light/dark cycles, 20-23°C and 50% relative humidity) with food and
water ad libitum.

During the imaging experiment, animals were anesthetized with 2% isoflurane
mixed with medical oxygen (0.3 L/min).

Image acquisition

Rats were positioned on an in-house made multimodality bed to facilitate animal
transport from the MR to the small animal irradiator. MR images of the rat brain
were acquired on a 7 T PharmaScan MR system (Bruker, Ettlingen, Germany)
using a 40 mm Bruker quadrature volume transmit/receive radiofrequency coil.
Four different MR sequences were acquired, including a T1-weighted MDEFT
sequence (TR/TE/TI = 1700/3.5/1100 ms, FA = 20°, NA = 1, TA = 29 min, voxel
size = 275x500x275um, 1283 matrix), a T2-weighted RARE sequence (TR/TE =
16000/37ms, FA= 164.4°, NA = 3, TA = 12 min, voxel size = 275x500x275um,
1283 matrix), an ultra-short echo time sequence with 20 ps echo time (UTE1)
(TR/TE =8/0.02ms, FA= 7.5°, NA = 3, TA = 20 min, voxel size = 275x500x275um,
1283 matrix) and an ultra- short echo time sequence with 2 ms echo time
(UTE2) (TR/TE = 8/2ms, FA= 7.5°, NA = 3, TA = 20 min, voxel size =
275x500x275um, 1283 matrix). All MR images were acquired in the coronal
orientation.

Immediately after the MR acquisitions, the animals were moved to the SARRP



(XStrahl, Surrey, UK). A CB-CT scan was acquired with the exposure settings set
to 70 kV, 1mA, 720 projections, 360° rotation and 1 mm aluminum filtration. The
acquired CB-CT projection data were reconstructed using a modified Feldkamp
reconstruction algorithm to a cubic voxel size of 0.275 mm into a 411x251x411
matrix.

Image processing

MR images were bias field corrected [12] and manually co-registered to the
reconstructed CB-CT by rigid body transformations using anatomical landmarks.
The reconstructed CB-CT images were automatically segmented into three tissue
classes (air, soft tissue and bone) using a k-means clustering algorithm [13].
These segmented CB-CT images were used as a reference for further dose
calculations using the treatment planning software (TPS) of the SARRP (3DSlicer
version 3.6.3).

To classify air, soft tissue and bone on the MR images, the images were
automatically segmented into three tissue classes using the fuzzy c-means
segmentation algorithm (FCM) [14] with multiple MR images as input. The FCM
algorithm assigns voxels a probability to belong to a specific tissue class. The
membership probability can be between 0 and 1, with one indicating 100%
probability and zero indicating 0% probability to belong to a specific tissue class.
When segmentation is done into three tissue classes, the sum of the probabilities
to belong to one of the three tissue classes is 1. To obtain a pseudo-CT image,
voxels were assigned to the tissue class having the highest membership
probability.

All possible combinations of the four MR images were used as input to the FCM
algorithm, resulting in 15 different pseudo-CT images. The similarity between
segmented CB-CT and pseudo-CT images was evaluated by using the dice
coefficient [15]:

D 2|CTt N MRt|
t=————
|CTt| + |MRt|

where CTt and MRt represent the voxels classified as tissue class t in the
segmented CB-CT pseudo-CT images, respectively. The dice coefficient can be
between 0 and 1; with one indicating identical segmentation for tissue class t.
The dice coefficient was calculated for bone and soft tissue. The sum of both
coefficients was calculated as the final measure for similarity.

The pseudo-CT images with the highest similarity index were used for further
RTTP.

Radiotherapy treatment planning

Segmented CB-CT, pseudo-CT and T2-weighted MR images were imported in the
TPS of the SARRP. The T2-weighted images were used to select the target of the



RTTP that was chosen to be in the primary cortex (M1). Different beam
arrangements were investigated to compare CB-CT and MR-based dose
calculations. Three different dose plans were calculated to deliver 15 Gy to the
target: using a single static beam of 3x3 mm, using a single arc (3x3 mm beam
size, 120° arc, couch at 0°), and three non-coplanar arcs (3x3 mm beam size,
120° arc, couch at 0°, 45° and 90°). Dose distributions were calculated using the
TPS of the SARRP and cumulative dose volume histograms (DVHs) of the target
and normal brain tissue were obtained for the three dose plans.

Results & Discussion
Similarity index

Figure 1 shows the similarity between the segmented CB-CT and the 15 pseudo-
CT images obtained by using the 15 possible combinations of the four MR images
as input to the FCM algorithm. The highest dice coefficient was obtained for the
T1-UTE1-T2 combination, which was used for further RTTP. In addition, dose
calculations were also done for the UTE1-UTE2 combination that is commonly
used to provide CT information from MR images [9,10].

As noted by other investigators [11] our results also indicate that UTE2Z does not
add valuable information to the segmentation process.
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Figure 1. Total dice coefficient of combination of MR images for bone (in red) and soft tissue (in
blue) segmentation.

The contribution of bone to the total dice coefficient did not exceed 27%. This is
related to the short repetition time necessary for a UTE sequence, resulting in
loss of signal observed in tissues with long T1, such as the vitreous body in the
eyes. Consequently, the eyes are misclassified as bone when UTE images are
used during the segmentation process (see Figure 2). However, the eyes are
sensitive to irradiation and can be considered as organs at risk during treatment
planning. In addition, bone accounts for only 2% of the image, therefore a
misclassified bone pixel has a bigger effect in the dice coefficient than a
misclassified soft tissue pixel.



Figure 2. Segmented images in three tissue classes; air (black), bone (white) and soft tissue (gray).
Coronal and sagittal view of CT (a,d), UTE1-UTE2(b,e) and T1-UTE1-T2(c,f) respectively.

Dose volume histograms

Figure 3 displays the DVHs in the target volume and the normal brain for CB-CT
and two MR-based dose calculations. Results are shown for the three beam
arrangements.
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Figure 3. DVH in the target and in the brain of CT (red), UTE1-UTE2 (green) and T1-UTE1-T2 (blue)

with (a) 1beam, (b) 1 co-planar arc and (c) 3 non-coplanar. (d)-(f) Amplification of the above DVH in
the target.

Using only 1 beam, both MR combinations underestimate the dose to be
delivered to the target. Figure 3a and 3d show that the UTE1-UTE2 combination
outperforms the T1-UTE1-T2 combination. However, this result cannot be



generalized for every beam, because changing the beam position will also change
the DVHs.

When more complex beam configurations were used to irradiate the target
(more similar to the clinic), very small differences were observed between CB-CT
and MR based dose calculations (Figure 3b, 3c, 3e and 3f) and the results are
more in agreement with the dice coefficient. In contrast to some reports in
literature [11, 16] the doses that have to be delivered to the target were slightly
overestimated when the pseudo-CT images were used during RTTP. The most
likely explanation is that parts of the air cavities in the rat head can be
misclassified as bone, increasing the dose to the target when MR-based dose
calculations are performed.

For future work, we will study the bone segmentation improvement by applying
other segmentation algorithms such as graph cuts.

Conclusion

We presented an MR-only based workflow for RTTP on a small animal radiation
research platform that enables both accurate organ delineation and accurate
dose calculations using multiple MR contrasts. The proposed method can be very
useful when the therapeutic dose has to be delivered in multiple fractions spaced
over time, where the cumulative radiation dose of the CB-CT might influence the
outcome of a study.
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