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Abstract A novel centrifuge set-up for the study of unsaturated flow characteri-
stics in porous media is examined. In this set-up, simple boundary conditions can
be used, but a free moving boundary between unsaturated-saturated flow arises. A
precise and numerically efficient approximation is presented for the mathematical
model based on Richards’ nonlinear and degenerate equation expressed in terms of
effective saturation using the Van Genuchten-Mualem approach for the soil param-
eters in the unsaturated zone. Sensitivity of the measurable quantities (rotational
moment, center of gravity and time period to achieve quasi steady state) on the soil
parameters is investigated in several numerical experiments. They show that the set-
up is suitable for the determination of the soil parameters via the solution of an
inverse problem in an iterative way.

1 Introduction

To predict the flow and solute transport in soils, one needs the soil hydraulic prop-
erties in terms of soil parameters. Once determined, these parameters can be used
as input data in the governing mathematical model. For unsaturated flow, this model
is given in terms of the saturation and the pressure head in Richards’ equation (see
below), which is a nonlinear and degenerate parabolic equation. Furthermore, when
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part of the sample is saturated, free boundaries between the saturated zone and the
partially saturated zone arise, as well as between the dry and the partially saturated
zone. This is a major problem for many modeling approaches, leading to experi-
mental set-ups that avoid the formation of these boundaries.

The soil retention and hydraulic permeability functions linking the saturation and
pressure head for unsaturated flow are expressed using the Van Genuchten-Mualem
ansatz by means of soil parameters. Measuring these soil parameters is usually time
consuming and tedious, especially for low conductive porous media. Several set-ups
based on centrifugation have been proposed to obtain a large acceleration of the pro-
cesses involved, see [2, 4, 5, 8, 3] and citations therein. These techniques have sev-
eral disadvantages. Aiming for a steady-state flow regime inside the centrifuge [2, 4]
requires expensive and/or complex apparatus, and obtains only a few water content
versus conductivity measurements per run. Also, transient set-ups based on keeping
a top boundary at a fixed prescribed setting [3] are expensive. The quasi-steady cen-
trifuge (QSC) method [1] is a simpler technique (a slowly emptying reservoir at the
top that is refilled when needed), but requires that the criterion for steadiness of flow
through the sample is relaxed, leading to higher uncertainty in the obtained results.

The alternatives for determining conductivity with a steady-state flow, combine
transient flow with parameter estimation techniques, see e.g. [3, 8]. In this way,
the conductivity and retention curve can be determined inversely over a large sat-
uration domain. These methods require experiments of some state variables which
relate to the conductivity. One-step or multi-step outflow methods are common in
column experiments. The measurements are then used to estimate the hydraulic pa-
rameters. This technique is transferred to the centrifuge device in [8]. Good results
are obtained, but there remain some disadvantages to this technique: there are few
measurements close to saturation, leading to a high error in the prediction of the
conductivity close to saturation, the sample needs to be disturbed to introduce elec-
trodes, and there is a very long waiting time in order to achieve equilibrium when
the equilibrium analysis approach is used.

The main goal of this manuscript is to develop a precise numerical method en-
abling to determine the soil parameters (via solution of inverse problem) in a very
simple way requiring very cheap measurements.

In this Chapter we focus on a partially saturated sample which is sealed at the
right boundary (from the center of centrifuge) and has no inflow at the left bound-
ary. The only measurements required are the rotational momentum and the center
of gravity of the sample at several time values, preferably also at the equilibria cor-
responding to predetermined rotational speeds. These measurements are sufficient
due to the fact that the saturation profile at the equilibria do not depend on the initial
distribution of water in the specimen, but only on its amount, which, when the right
boundary of the sample is sealed, is identical in all equilibria.

To use this procedure, we have to face serious difficulties in the numerical mod-
eling. The main one is that if the right side of the sample reaches effective satura-
tion, an interface between partially saturated zone and saturated zone appears. This
boundary is very difficult to control numerically, causing problems with the mass
balance conservation which is very important in this set-up.
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To reach the equilibrium is an infinite asymptotic process, but after some time
(e.g. 1-3 days for low conductive material) the change of the rotational momen-
tum and of the center of gravity can no longer be measured. At that moment, the
rotational speed is increased, and the system moves towards a new corresponding
equilibrium. Note that even when equilibrium was not reached and a small error is
present in the measurements of the rotational momentum and the center of gravity,
this will not influence the error at the higher equilibrium level. This error depends
only on the running time of centrifugation at the actual rotational speed. The dif-
ferences between applied rotational speeds are chosen in such a way that that the
differences in outputs (rotational momentum and center of gravity) are technically
well distinguishable.

Next, the soil parameters and eventually the amount of originally infiltrated wa-
ter, can be determined by minimizing a cost functional expressing the distance be-
tween the measured and the computed output, e.g., with the Levenberg-Marquard
method. The advantage of this approach is that the full range of saturation values
are present in the setup, while preventing outflow means equilibrium can be ob-
tained faster. However, due to the set-up, it is clear that the water flows from the
unsaturated zone to the saturated zone, with no flow occurring in the saturated zone.
Indeed, we notice that the rotational momentum and center of gravity are not suffi-
ciently sensitive on the “saturated hydraulic conductivity”. This parameter is hence
better determined from saturated flow experiments, see eg [5].

In the numerical method, we reduce the mathematical model to a system of ordi-
nary differential equations (ODE) using the method of lines (MOL), which has al-
ready been successfully applied to Richards’ equation in e.g. [6]. As a variation, a re-
duction to a system of ODE and algebraic equations (DAE) is considered. Our main
contribution is in correctly handling the moving free boundary. The obtained system
can be solved with ODE/DAE solvers for stiff systems.. The numerical method can
be successfully applied in other centrifugation settings (concerning control of the
inflow, or control of the outflow) as, e.g., in [8, 3].

In Section 2, we present the mathematical model, giving specific attention to the
movement of the free boundary. In Section 3 the numerical method based on the
MOL approach is given, while in Section 4 the approach to determine the saturated
hydraulic conductivity is explained. We finish in Section 5 with several numerical
experiments showing the sensitivity of the output parameters on the soil parameters.

2 Mathematical Model

We consider a one dimensional model for a partially saturated sample in the form of
a tube. The tube starts (top or left boundary) at the distance r = r0 from the center of
the centrifuge and ends at the distance r = r0 +L. The right boundary of the speci-
men is isolated. Flow in porous media under centrifugation is modeled by Darcy’s
equation in the saturated region and by Richards’ equation in the unsaturated region
(see, e.g., [8],[3]). So
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∂r

[
Ks

(
∂rh−

ω2

g
r
)]

= 0, (1)

in the saturated region, and

∂tθ = ∂r

[
k(θ)

(
∂rh−

ω2

g
r
)]

, (2)

in the unsaturated region. Here, h is the piesometric head, θ the saturation of the
porous medium, ω the angular speed of rotation (in radians per second), Ks the
hydraulic conductivity in the saturated region, g the gravitational constant and the
function k(θ) describes the hydraulic conductivity in the unsaturated region. Denote
by u = θ−θr

θs−θr
the effective saturation, where θs is the volumetric water content at

saturation and θr is the residual volumetric water content. We have u ∈ (0,1), since
θ ∈ (θs,θr). The soil hydraulic properties are represented by empirical expressions
(see [7]),

u =
1

(1+(γh)n)m , h ∈ (−∞,0), k(u) = Ksu1/2[1− (1−u1/m)m]2, (3)

where m = 1− 1/n, n > 1 and γ are empirical soil parameters. Determining γ , n
and Ks from the experiments means the soil retention curve has been determined.
Note that we do not take hysteresis of the retention curve in consideration with this
model.

It is possible to rewrite the flow in unsaturated form as

∂tu = ∂r

(
D(u)∂ru−

ω2

g
k(u)r

)
, (4)

where

D(u) =− Ks

(n−1)γ(θs −θr)
u1/2−1/m(1−u1/m)−m × [1− (1−u1/m)m]2. (5)

Equation (4) is strongly nonlinear and degenerate. We note that D(0) = 0, D(1) =∞.
Equilibria at the high rotational speed can be expected to have a fully saturated zone
(supposing the initial amount of infiltrated water is sufficiently large), which appears
at the right boundary and of which the front evolves to the left of the specimen
(under non-decreasing rotational speed). We denote the position of this interface by
s(t). This saturated zone is governed by Darcy’s equation, but s(t) is unknown and
time dependent. The time evolution of s(t) is difficult to compute. The dynamics of
this region is linked with the (finite) interface flux qi

qi =−
(

D(u)∂ru−
ω2

g
k(u)r

)∣∣∣∣
r=s(t)

,
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and based on a mass balance argument we can expect ṡ(t) =−qi. Unfortunately, we
cannot use this model for the determination of the time evolution of s(t), since at
r = s(t) it holds u = 1 and D(1) = ∞. Consequently, ∂ru|r=s(t) = 0.

If we transform Richards’ equation in terms of the piesometric head using (3),
we obtain

ds(h)∂th = k0∂r

[
k̄(h)∂rh−

ω2

g
k̄(h)r

]
, (6)

with k0 =
Ks

θs−θr
, where k0k̄(h) is the hydraulic conductivity function,

k̄(h) =
1

(1+(γh)n)m/2

(
1− (γh)n−1

(1+(γh)n)m

)2

,

and the specific moisture capacity function ds(h) = du/dh is given by

ds(h) =−γ(n−1)
(γh)n−1

(1+(γh)n)1+m .

We can see that k̄(h)→ 1 for h → 0. In Fig. 1 we present the graph of the functions
k̄(h) and 100ds(h) for h ∈ (−200,0), and parameter values Ks = 2.410−5, n = 2.81,
γ =−0.0189. As we can see, Eq. (6) also degenerates at h = 0. This has to be taken
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Figure 1 k̄(h) and 100×ds(h) for n = 2.81, γ =−0.0189

into account when saturation becomes 1 at the right boundary of specimen. After
this moment, t = t1, the mathematical model must be changed to reflect the physical
phenomenon. At the right hand side of the (isolated) specimen appears a saturated
zone with an interface s(t) moving from the right boundary to the left. The flux at
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the interface s(t) is equal to −ṡ(t), but also in this pressure-head form of Richards’
equation it is difficult to approximate correctly ∂th|x=s(t), which leads to a significant
error in the mass balance.

Therefore, to determine the interface s(t), we will consider the algebraic equation∫ r0+L

r0

u(h(x, t)) dt +L− s(t) = Mw, s(0) = L, (7)

where Mw is the amount of infiltrated water (which remains constant during the
centrifugation). This condition reflects the global mass balance in the specimen and
does not suffer from a flux approximation at r = r0 + s(t).

Then, mathematical model (6) only needs to be solved over the interval r ∈
(r0,r0 + s(t)) with right boundary condition h(r0 + s(t)) = 0 for all t. We approxi-
mate this mathematical model in the next section.

3 Numerical Method

For the output parameters that will be measured (gravity center and rotational mo-
mentum), there is no need to model the head in the saturated zone, as we consider the
compressibility of water to be negligible. The numerical approximation of (6)-(7)
results in a coupled system of a partial differential equation (PDE) and an alge-
braic equation. Moreover, the solution domain is a moving region, with unknown
interface s(t), which has to be determined.

We shift (6) to the domain r ∈ (0,s(t)) and use the fixed domain transformation
y = r

s(t) . This gives

ds(h)
(

dth(y, t)− y
ṡ(t)
s(t)

∂yh
)
= k0

1
s(t)2 ∂y

(
k̄(h)∂yh− k̄(h)

ω2s
g

(r0 + ys(t))
)
. (8)

Consider the space discretization 0 = y0 < y1 < .. . < yi < .. . < yN = 1, and α0 =
0, αi := yi − yi−1, i = 1, . . . ,N and integrate (8) over Ii := (yi−1/2,yi+1/2) for i =
1, . . . ,N −1 where yi−1/2 := (yi + yi−1)/2, yi+1/2 := (yi + yi+1)/2.

We denote by hi(t)≈ h(yi, t), ∀i = 1, . . . ,N−1, and approximate dth(y, t)≈ ḣi(t)
in the interval Ii. We approximate

∂yh|y=yi+1/2 ≈
hi+1(t)−hi(t)

αi+1
=: ∂+hi

and similarly we approximate ∂yh|y=yi−1/2 and denote it by : ∂−hi. Let L (z;yi) be
the second order Lagrange polynomial crossing the points (yi−1,hi−1),(yi,hi) and
(yi+1,hi+1). We use the abbreviation ki+1/2 := k̄(hyi+1/2). Then, the approximation of
(8) (based on finite volume type approximation) at the point y = yi reads as follows
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ds(hi)

(
ḣi −

ṡyi

s
dL (z;yi)

dz

∣∣∣∣
z=yi

)
= k0

2
αi +αi+1

1
s2

[
ki+1/2∂+hi − ki−1/2∂−hi−

ω2s
g

(
ki+1/2(r0 + syi+1/2)− ki−1/2(r0 + syi−1/2)

)]
(9)

for i = 1, ...,N − 1. We add the corresponding equation at point y0 taking into ac-
count that the flux is zero there. In a similar way as in (9) (following the finite
volume type of approximation) we obtain

ds(h0)ḣ0 = k0
2

α(1)
1
s2 ×

[
k1/2∂+h1 −

ω2s
g

(
k1/2(r0 + sy1/2)

)]
. (10)

At the point yN = 1 we have hN(t) = 0, so no additional equation is considered. We
approximate the amount of water Mw using the trapezoidal rule for the integration.
Define

Q(t)≈ u0 α1/2+αN/2+
N−1

∑
1

αi +αi+1

2
ui,

where ui =
1

(1+(γhi)n)m . Then, system (9)-(10) will be completed by the algebraic
equation

0 = L− s(t)[1−Q(t)]−Mw. (11)

This algebraic equation is used instead of an ODE equation that models ṡ(t). System
(9)-(11) is degenerate and is of the form

M(t,z)ż(t) = f (t,z) (12)

where z = (h0,h1, ...,hN−1,s). The last equation of this system is just (11). This
system can be readily solved, e.g., by the solver “ode15s” in MATLABr or the
“ida” solver of the Sundials package.

As is usual with these solvers, some regularization in (11) is needed as well as a
tuning of the space discretization. Most important is to have a “good” starting point.

If the equilibria have the property hN < 0, then no interface appears. It is then
needed to set s(t) := L in the previous mathematical model and replace algebraic
equation (11) by an ODE equation for ḣN which will be similar to (10). Succes-
sively increasing the rotational speed of the centrifuge increases the head at the
right boundary. The model remains in the state where s(t) := L up to the point when
h(N) = 0, at which point the computation is automatically halted. The full model
(9)-(11) is used onwards to compute the equilibrium states.

In numerical equilibrium experiments it is observed, as expected, that the values
of the rotational moment Mr and the center of gravity Gc are not very sensitive to
the Ks parameter. Also, the transient experiments where the time sections between
different equilibria are measured, are not very sensitive. The saturated conductivity
Ks can only be determined from measurements of Mr, Gc that are accurate up to 3
digits. Therefore, another method must be used for the determination of Ks.
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4 Alternative Experiments

4.1 Saturated Flow

For the determination of the saturated conductivity, we propose to use the method
put forward in [5], a water reservoir put to the left of a saturated sample and collec-
tion of the water in an outflow reservoir, with the addition of allowing for transient
measurements. We specifically use the ability to measure when a reservoir has com-
pletely drained out, combined with the measurements of the rotational moment.

This leads to the following equation for the dropping water level `(t) in the reser-
voir,

˙̀(t) =−Ks
ω2

2gL

[
L2 − `(t)2 +2r0(L+ `(t)))

]
≡−qF(t), (13)

with `(0) = l0 and `(Te) = 0. Solving this ODE, we obtain the relation between Te
and Ks, whereas `(t) fully determines the change of the rotational moment Mr(t)
over time.

4.2 Water Reservoir and Outflow Reservoir

The mathematical and numerical model presented can be extended also to allow for
a water reservoir to the left of an unsaturated sample, and an outflow reservoir to
the right. This allows several different centrifugation experiments to be performed,
and allows to change the set-up during an experiment. For example, the following
scenario is possible: 1. Start from a saturated sample and a water reservoir to the
left. This makes it possible to determine Ks. 2. Continue with outflow of the water
content, making the sample unsaturated. 3. Isolate the right boundary (that is, close
it), which means we have the problem as described in the previous two Sections. 4.
Continue step 2 and 3 of above so as to change the global water content.

The advantage of the above centrifugation scenario is that all parameters can be
determined with one ground sample, and that more saturation levels are sampled
during the entire experiment. The main point to arrive at an accurate solution of
the model doesn’t change: an algebraic equation for mass balance determines the
difficulty to control unknowns. With a closed right boundary, this is the moving
interface, with an open boundary, this will be the outflow flux.

5 Numerical Experiments

For the first experiments we use as data r0 = 10, L = 10, ω = 30, Ks = 2.410−5,
θr = 0.02, θs = 0.4, γ =−0.0189, n = 2.81, except where sequences are compared
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to investigate the sensitivity of the set-up on the parameters. A uniformly distributed
space discretization with N = 40 grid points is used.

The formulas for Mr, Gc and Mw at time t are:

Mr =
s(t)
2

∫ 1

0
(r0 + s(t)z)2u(t,z)dz+

1
6
(L3 − s(t)3),

Mw = s(t)
∫ 1

0
u(t,z)dz+

1
2
(L2 − s(t)2), Gc = s(t)

∫ 1

0
yu(t,z)dz/Mw,

and are all evaluated numerically using the trapezoidal rule. Note that if u(t,1)< 1
then s(t) = L. The sensitivity of the measured quantities on the changing water
content is very good. The following experiments allow to determine the contribution
a change in the different soil parameters has on the measurements.

5.1 Reaching Equilibrium

To investigate the head profiles we start this experiment from the equilibrium cor-
responding to ω = 40 and a rotational speed ω = 50. The centrifuge normally op-
erates up to Te = 1.540.000 seconds. At that time, equilibrium for ω = 50 is almost
reached. We compare 13 values, the starting value, 9 increasing time steps (with
∆ t j = t j+1−t j = 20002 j, j = 1, ...,9), the sensible end time step Te = 770×2.000s,
and 2 extra time steps to investigate the very long time behavior. The measured val-

Table 1 Rotational momentum, center of gravity, water amount for Exp. 5.1
time
2000 s Mr,e 10−6 Gc Mw
0 1.5201 7.2512 4.0141
1 1.5248 7.2813 4.0128
3 1.5299 7.3119 4.0131
7 1.5345 7.3413 4.0133
15 1.5389 7.3697 4.0134
31 1.5430 7.3972 4.0134
63 1.5469 7.4234 4.0135
127 1.5505 7.4478 4.0135
255 1.5537 7.4699 4.0136
511 1.5565 7.4893 4.0136
770 1.5588 7.5056 4.0136
1800 1.5645 7.5462 4.0133
2300 1.5649 7.5494 4.0133

ues for the rotational momentum, gravity center, and water amount, are given in
Table 1. The small change between the last two values in Table 1 demonstrates that
equilibrium is eventually reached.
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We can conclude that reaching equilibrium is a very slow process. The reason
for this is that the hydraulic permeability at low head is negligibly small, so it takes
a very long time to reach the equilibrium. If the centrifugation is continued, also
the section with low head obtains the required parabolic shape associated with the
equilibrium. Note however, that the other part of the head profile (for higher head
values) is changing insignificantly. Therefore, we arrive at the conclusion that it
makes sense to increase the rotational speed and not wait for these lower head values
to stabilize.

5.2 Dependence on n

In this experiment, we demonstrate the sensitivity of Mr and Gc to the model pa-
rameter n. We start with a constant saturation u = 0.4 and apply the rotational speed
ω = 20. The centrifuge is operated for 800.000s. In Fig. 2 the obtained equilibrium
profiles are depicted for successively n = 1.51; 1.81; 2.11; 2.41; 2.71; 2.81; 3.01
and 3.31.
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Figure 2 Equilibrium profiles at ω = 20 for n = 1.51; 1.81; 2.11; 2.41; 2.71; 2.81; 3.01 and 3.31.

The resulting values for Mr, Gc and Mw are given in Table 2, and indicate a good
sensitivity.

5.3 Dependence on γ

We now investigate the sensitivity of Mr and Gc to the γ soil retention curve pa-
rameter. We again use a rotational speed of ω = 50, starting from the equilibrium
position at ω = 35. As values for γ we consider γ =−γ0 102 with γ0 ∈ (1.59; 2.19)
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Table 2 Rotational momentum, center of gravity and water amount for Exp. 5.2

n Mre.10−6 Gc Mw
1.51 0.1887 5.0736 4.0043
1.81 0.1927 5.2391 4.0052
2.11 0.2020 5.6188 4.0043
2.41 0.2068 5.8096 4.0062
2.71 0.2083 5.8701 4.0054
2.81 0.2112 5.9870 4.052
3.01 0.2153 6.1524 4.0060
3.31 1.5505 7.4478 4.0135

where increments of size 0.1 are used. The values of Mr and Gc are listed in Table
3 and Table 4, respectively. The corresponding saturation and head profiles at time
section t = 105 are given in Fig. 3. In Tables 3 and 4 the water amount is 4.05. The

Table 3 Rotational momentum Mr 10−6 for Exp. 5.3,

time\γ0 1.59 1.69 1.79 1.89 1.99 2.09 2.19
1000 1.5189 1.5093 1.5013 1.4949 1.4896 1.4854 1.4819
3000 1.5352 1.5213 1.5097 1.5000 1.4919 1.4852 1.4797
5000 1.5438 1.5278 1.5144 1.5030 1.4935 1.4855 1.4788
104 1.5565 1.5376 1.5216 1.5079 1.4963 1.4864 1.4780
5.104 1.5901 1.5645 1.5423 1.5231 1.5063 1.4917 1.4791
105 1.6058 1.5777 1.5530 1.5313 1.5124 1.4958 1.4812

Table 4 Center of gravity for Exp. 5.3

time\γ0 1.59 1.69 1.79 1.89 1.99 2.09 2.19
1000 7.1117 7.1031 7.0948 7.0872 7.0805 7.0744 7.0693
3000 7.1487 7.1379 7.1271 7.1170 7.1076 7.0990 7.0912
5000 7.1697 7.1581 7.1464 7.1351 7.1245 7.1146 7.1056
104 7.2026 7.1903 7.1775 7.1649 7.1527 7.1411 7.1303
5.104 7.3012 7.2898 7.2763 7.2617 7.2466 7.2314 7.2167
105 7.3512 7.3429 7.3309 7.3167 7.3012 7.2851 7.2689

sensitivity on γ is less than that of n, but is sufficient. Nevertheless, taking transient
information into account, as given in the rows of Tables 3 and 4, will benefit the
determination of γ via this experimental set-up.
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Figure 3 Saturation profiles at equilibrium for ω = 50, γ0 =
1.59; 1.69; 1.79; 1.89; 1.99; 2.09; 2.19

5.4 Inverse determination of γ , n and Ks

In this numerical experiment, we use r0 = 30 L = 10,ω = 20, Ks = 2.4.10−5, θr =
0.02,θs = 0.4, γ = −0.0189 and n = 2.81. The space discretization for T ∈ (0,T1)
is not equidistant. Here T1 is the time needed to empty the left water reservoir. We
shall consider N = 40 grid points with geometrical distribution as follows. The first
space interval is d1 = 1/20 and then di+1 = qdi with q < 1. Once the water reservoir
is empty, a uniform space discretization with N = 40 is used.

In this experiment, we restore the soil parameters applying the following cen-
trifugation scenario. First, we centrifugate the fully saturated sample along the time
104 and collect data1 = {M1,G1,Mw,1}. Then, we isolate the right boundary of the
sample and centrifugate it tor t = 5000s with rotational speed ω = 15. Then, we
obtain data2 = {M2,G2,Mw,2} (where Mw,2 = Mw,1, since we have zero output). Af-
ter this, we repeat these two steps with the same sample at the same running time
t = 5000s and ω = 20. Successively we obtain data3 = {M3,G3,Mw,3}, data4 =
{M4,G4,Mw,4} where (Mw,4 = Mw,3) and continue up to data7. Then, the total mea-
surement data is represented by the vector data = {data1,data2, . . . ,data7}. To im-
itate a realistic situation, we perturb every component of data by 0.01.(rand−0.5),
where rand is a generator of random numbers from (0,1). This corresponds to 0.5%
noise. Next, we apply the Levenberg-Marquardt method to restore the soil param-
eters, starting from initial parameters γ = −0.01,n = 2.,Ks = 1.610−5. The corre-
sponding iterations of the LM method are presented in Table 5.
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iteration −100.γ n Ks 105 RMS
0 1. 2. 1.6 3.3977
1 1.7643 3.4612 1.6149 5.05710−2

3 1.8555 2.8423 2.2320 2.87810−4

5 1.8469 2.8519 2.2185 1.50610−4

Table 5 LM -iterations for determination of γ,n,Ks

6 Conclusion

In this Chapter, it is shown that global characteristics measured with a centrifuge
can be used to determine the soil retention curve of ground samples. In order for
this to work, transient data must be used, different centrifugation scenario’s must be
coupled to obtain sufficient information, and a very precise numerical model must be
used. Specifically, this model must be able to accurately track the moving interface.
We further draw attention that in the alternative scenario using outflow, no outflow
boundary condition is imposed. This gives more freedom to the experimentator.
Instead, for all simulations, an algebraic equation based on mass balance is used to
obtain a solution.
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