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Abstract— Compressed sensing methods using sparse measure-
ment matrices and iterative message-passing recovery procedures
are recently investigated due to their low computational complex-
ity and excellent performance. The design and analysis of this
class of methods is inspired by a large volume of work on sparse-
graph codes such as Low-Density Parity-Check (LDPC) codes and
the iterative Belief-Propagation (BP) decoding algorithms. In par-
ticular, we focus on a class of compressed sensing methods emerg-
ing from the Sudocodes scheme that follow similar ideas used in
a class of sparse-graph codes called rateless codes. We are inter-
ested in the design and analysis of adaptive Sudocodes methods
and this paper provides initial steps in this direction.

1 Introduction

Let x = (z1,22,...,2n) € FY be a vector of input sym-
bols (message) from g-ary alphabet. Let us transform this mes-
sage into arbitrarily long sequence of output symbols y
(y1,92,...) € Fgy, where each output symbol y; € F, is a
“projection” of message x onto a sparse binary vector g; of
length N, i.e., y; = g; - x_. Each vector g; is obtained simply
by distributing small number d of ones uniformly at random
over IV possible positions. We assume the number of ones in
g;, called the degree of g;, is drawn from a degree distribu-
tion Q over integers d € [1,2,..., N]. LT codes are class of
rateless codes providing a recipe for capacity-approaching de-
gree distributions {2 that, combined with a simple iterative re-
covery procedure, recover x from any N + O(v/N In*(N/4))
output symbols with probability 1 — § [1]. The average de-
gree of (2 scales as O(In(IN/d)) and thus results in transforma-
tion/recovery complexity of O(N In(N/§)).

If x € RY and is K-sparse (meaning that only K << N
input symbols are non-zero) the above rateless methodology
for message recovery is still applicable. Sudocodes scheme
[2], that independently emerged in compressed sensing com-
munity, exploited similar ideas and proposed the iterative re-
covery procedure which is later identified to be an instance
of the verification-decoding for sparse-graph codes [3]. The
Sudocodes scheme is extended into a more general framework
called Compressed Sensing via Belief Propagation (CSBP) in-
spired by the iterative Belief-Propagation (BP) decoding of
LDPC codes [4]. Sudocodes sparked significant interest of
coding community for Compressed Sensing (CS) methods us-
ing sparse measurement matrices and iterative message-passing
recovery algorithms. Using well-developed tools from coding
theory, CS methods combined with verification-based recovery
have been analyzed in [5] and [6].

This paper explores Sudocodes scheme using design and
analysis tools used in rateless coding. These tools are applied
for the design of adaptive Sudocodes scheme, where the se-
quence of output symbols are not mutually independent but de-
signed based on the outcomes of previous output symbols.

2 The Sudocodes: Design and Analysis

The Sudocodes scheme projects the K-sparse message x € RY
into a sequence of output symbols y; € R using random sparse
binary projection vectors g; of constant degree d = L. In other
words, the Sudocodes scheme is a rateless code applying the
degree distribution' Q(z) = z*.

The Sudocode scheme recovers x from a sequence of M out-
put symbols y = (y1,¥a2,...,yn) by applying verification-
based recovery across a measurement graph [3]. A measure-
ment graph consists of N input symbol nodes corresponding
to x and M output symbol nodes corresponding to y. Edges
of the graph connect each output symbol node y; to its neigh-
bor set N(y;) of input symbol nodes determined by non-zero
positions in g;. The measurement graph is usually defined by
(edge-oriented) degree distributions for input and output sym-
bol nodes: A(z) = Y, A -2 tand w(z) = Y, w; - '
Q' (x)/(1) [7]. Two verification-based recovery algorithms
called LM1 and LM2 algorithm are proposed in [3]:

LM1: The LM1 operates iteratively over the measurement
graph by applying following rules: 1) If y; = 0 then Vx; ¢
N(y;) : ®j = 0; Verify all x; : z; € N(y;). 2) If (y; #
0) A (|N(y;)| = 1) then z; = y; for the node x; € N(y;); Ver-
ify ;. 3) Remove verified coefficient nodes and their incident
edges from the graph; Subtract out verified values from remain-
ing measurements. 4) Repeat until successful signal recovery
or makes no progress in two consecutive iterations.

LM2: Besides the above LM1 rules, LM2 adds the addi-
tional one: If (N(y;) N N(y;) = {zx}) A (yi = y;) then
xp = y; = yj and Vo, € {N(y;) UN(y;) \ 2x} : 21 = 0;
Verify all x; € {N(y;) UN(y;) \ &}

Reconstruction of x using LM1 algorithm is equivalent to
LT decoding [1], thus the AND-OR-tree analysis [7] used to
asymptotically evaluate the performance of LT codes can be
easily reshaped for LM1 recovery analysis.

Lemma 2.1. Let p ) and p(z) denote the probabilities that a
zero and non zero input symbol, respectively, is not recovered
after l iterations of LM 1 recovery. Then
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where a = K/N, we use compact notation * = 1 — x, and
the recursion is initialized at p (Z) = 1. Finally, p;

( ) +ap( *) is the average probablllty that a signal coefficient
is not recovered after | iterations of LM1 recovery.
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'In rateless coding, the degree distributions are represented as polynomials
Qz) =3, Qi - x*, where Q; = P(d = i).
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Figure 1: Asymptotic performance of Sudocodes scheme.

In terms of zero input symbol recovery probability P£Z> =
1 — p®®), it is easy to show that the optimal degree distribu-
tion equals Q(z) = 2%, where d* ~ (log 2=)~!. Optimal
degree distributions for average input symbol recovery proba-
bility P,, = 1 — p can be obtained as described in [1] and [8].

Example 2.1. Fig. I shows asymptotic recovery probabilities
(as N — 00) obtained from Lemma 1 for Sudocodes scheme
that applies Q(z) = x?° after LM1 recovery of input message
of sparsity-factor « = 0.05 (d*(a = 0.05) = 20) for zero
and non-zero input symbols and average value. Fig. 3 shows
asymptotic recovery probability curves for Q(z) = x with in-
creasing d = {5, 10,15, 20, 25, 30}.

3 Adaptive Sudocodes

Consider the following modification to the Sudocodes scheme:

Modification 1: After generating output symbol y; = 0, re-
move input symbols z; € N(y;) from consideration while gen-
erating following output symbols.

Modification 2: Due to the first modification, the sparsity-
factor o decreases as the number of generated output sym-
bols increase. Thus we continuously update the optimal degree
d* = d*(«) before each output symbol is generated.

We analyze the Adaptive Sudocodes by following the evo-
Iution of measurement matrix with the process of generating
output symbols (see Fig. 2). Starting from the initial sparsity-
factor cy = K /N, the process runs through a sequence of in-
creasing a-values {av, ag, ...} at which the optimal d*-values
decrement. The total of m; measurements are generated us-
ing degree d; during which the sparsity-factor increases from
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Figure 2: Evolution of measurement matrix in Adaptive Sudocodes.
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Figure 3: Sudocodes (SC) and adaptive-SC (aSC) performance.

o; to a;41. By tracking the parameters (dimensions and de-
gree distributions) of the sequence of measurement matrices
®,,7 > 0, and using Lemma I, we are able to track the evo-
lution of asymptotic recovery probabilities of LM1 reconstruc-
tion. The complete analysis is omitted due to lack of space,
however, we note that due to approximations of degree distri-
butions, the resulting analysis is not exact (see example below).

Example 3.1. Fig. 3 shows asymptotic recovery probability
for Adaptive Sudocodes for initial sparsity-factor oy = 0.05.
Simulated results for both Sudocodes and Adaptive Sudocodes
scheme are provided for K = 50 and N = 1000 demonstrating
that Adaptive Sudocodes performs better with lower complexity
since the optimal degree d* decreases from d = 20 down to
d=2at M/N = 0.35. We note that our approximate analysis
matches well the simulated performance except that it becomes
conservative in the region of large M /N-values.

4 Comments and Future Work

The rateless codes that apply Q(z) with constant average de-
gree = (1) are affected by upper bound on recovery prob-
ability that scales as e~*¥ . InLT codes, this is solved by using
degree distributions whose average degree scales as O(log N)
[1], for the price of increased encoding/decoding complexity of
O(N log N). More advanced solution called Raptor codes pre-
serves linear encoding/decoding complexity by using high-rate
precoding combined with the constant average degree 2(x) [8].

The Sudocodes scheme suffers from the same error-floor
problem due to a constant-degree {2(x) employed. This is
solved by employing second phase where non-sparse measure-
ments are combined with matrix inversion to recover small
fraction of remaining input symbols [2]. However, instead of
“postcoding”, it is more instructive to use the Raptor-idea of
“precoding” the message by adding small number of additional
precoded input symbols followed by Sudocodes scheme with
constant-degree (2(x). This design is part of our ongoing work.

Finally, extending Adaptive Sudocodes to LM2 recovery
has strong potential for further performance improvements and
knowledge extraction from previous measurements. Note that
in LMI1 recovery, zero input symbols are learned only from
zero-valued output symbols, while in LM2 recovery, the ad-
ditional recovery rule provides new possibilities for zero input
symbols identification. However, asymptotic analysis of LM2
algorithm seems to be considerably more involved [6]. The de-
sign and analysis of Adaptive Sudocodes for LM2 recovery is
part of our ongoing work.
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