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Abstract. As two basic building blocks for any quantum circuit, we consider the 1-qubit
PHASOR circuit Φ(θ) and the 1-qubit NEGATOR circuit N(θ). Both are roots of the IDENTITY

circuit. Indeed: both Φ(0) and N(0) equal the 2× 2 unit matrix. Additionally, the NEGATOR is
a root of the classical NOT gate. Quantum circuits (acting on w qubits) consisting of controlled
PHASORs are represented by matrices from ZU(2w); quantum circuits consisting of controlled
NEGATORs are represented by matrices from XU(2w). Here, ZU(n) and XU(n) are subgroups of
the unitary group U(n): the group XU(n) consists of all n × n unitary matrices with all 2n
line sums (i.e. all n row sums and all n column sums) equal to 1 and the group ZU(n) consists
of all n × n unitary diagonal matrices with first entry equal to 1. Any U(n) matrix can be
decomposed into four parts: U = exp(iα)Z1XZ2, where both Z1 and Z2 are ZU(n) matrices
and X is an XU(n) matrix. We give an algorithm to find the decomposition. For n = 2w it
leads to a four-block synthesis of an arbitrary quantum computer.

1. Introduction

The unitary group U(n) is important for quantum computing, because all quantum circuits
acting on w qubits can be represented by a member of the unitary group U(2w). For example,
all quantum circuits, acting on a single qubit, are represented by a matrix from U(2). The
simplest U(2) matrix is the 2× 2 unit matrix. It represents the IDENTITY gate or I gate:

(

1 0
0 1

)

= I .

This gate is trivial, as it performs no action on the qubit: the output qubit equals the input
qubit. Within U(2), the I matrix has a lot of square roots: four diagonal matrices

(

1 0
0 1

)

,

(

−1 0
0 1

)

,

(

1 0
0 −1

)

, and

(

−1 0
0 −1

)

,

as well as an infinity of ‘anti-diagonal’ matrices:

√
−1

(

0 eiχ

−e−iχ 0

)

,
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where χ is an arbitrary real number. From this set, we choose two elements:

(

1 0
0 −1

)

and

(

0 1
1 0

)

.

The latter matrix results from the choices
√
−1 = −i and χ = π/2 and represents the NOT

gate or X gate [1]. The former matrix represents the Z gate. Whereas the X gate is a classical
computer gate, inverting the incoming bit, the Z gate is a true quantum gate.

We now introduce a generalization of both the X and the Z matrix:

N(t) = (1− t) I+ t X

Φ(t) = (1− t) I+ t Z ,

where t is an interpolation parameter [2]. We can easily prove that these matrices are unitary,
iff t is of the form (1− eiθ)/2, resulting in

N(θ) = 1
2 (1 + eiθ) I+ 1

2 (1− eiθ) X

Φ(θ) = 1
2 (1 + eiθ) I+ 1

2 (1− eiθ) Z .

We thus have constructed two 1-dimensional subgroups of the 4-dimensional group U(2):

N(θ) =
1

2

(

1 + eiθ 1− eiθ

1− eiθ 1 + eiθ

)

Φ(θ) =

(

1 0
0 eiθ

)

.

The gate represented by the matrix N(θ), we call the NEGATOR gate. It thus constitutes a
generalization of the NOT gate. The gate represented by the matrix Φ(θ), we call the PHASOR

gate. We use the following symbols for these quantum gates:

N(θ) and Φ(θ) ,

respectively. In the literature [3] [4] [5] [6], some of these gates have a particular notation:

N(0) = I

N(π/4) = W

N(π/2) = V

N(π) = X

N(2π) = I

Φ(0) = I

Φ(π/4) = T

Φ(π/2) = S

Φ(π) = Z

Φ(2π) = I .

In particular, the V gate is known as ‘the square root of NOT’ [7] [8] [9] [10].
The subgroup of all N(θ) matrices, we denote by XU(2); the subgroup of all Φ(θ) matrices,

we denote by ZU(2). These two subgroups of U(2) have three interesting properties.
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(i) Their intersection is minimal, as it equals U(2)’s trivial subgroup consisting of merely one
2× 2 matrix, i.e. the identity matrix I.

(ii) Their closure is maximal, as it equals U(2) itself. Indeed, an arbitrary member of U(2), i.e.

U = eiα
(

cos(ϕ) eiψ sin(ϕ) eiχ

− sin(ϕ) e−iχ cos(ϕ) e−iψ

)

(1)

can be synthesized by cascading merely NEGATORs and PHASORs. The reader may verify the
following two matrix decompositions:

U = eiα+iϕ+iψ
(

1 0
0 i e−iψ−iχ

)

1

2

(

1 + e−i2ϕ 1− e−i2ϕ

1− e−i2ϕ 1 + e−i2ϕ

)(

1 0
0 −i e−iψ+iχ

)

U = eiα−iϕ+iψ
(

1 0
0 −i e−iψ−iχ

)

1

2

(

1 + ei2ϕ 1− ei2ϕ

1− ei2ϕ 1 + ei2ϕ

)(

1 0
0 i e−iψ+iχ

)

. (2)

Because, moreover, any phase factor can be decomposed as

(

eiβ 0
0 eiβ

)

=

(

0 1
1 0

)(

1 0
0 eiβ

)(

0 1
1 0

)(

1 0
0 eiβ

)

,

we conclude that U equals the cascade of three NEGATORs and three PHASORs:

U = N(π) Φ(α+ ϕ+ ψ)N(π) Φ(α+ ϕ− χ+ π/2)N(−2ϕ) Φ(−ψ + χ− π/2)

U = N(π) Φ(α− ϕ+ ψ)N(π) Φ(α− ϕ− χ− π/2)N(2ϕ) Φ(−ψ + χ+ π/2) .

(iii) We note that the two subgroups are each other’s Hadamard conjugate:

ZU(2) = H XU(2) H and XU(2) = H ZU(2) H ,

where H denotes the Hadamard matrix:

H =
1√
2

(

1 1
1 −1

)

.

2. Decomposition of an arbitrary unitary matrix

Two-qubit circuits are represented by matrices from U(4). We may apply either the NEGATOR

gate or the PHASOR gate from the previous section to either the first qubit or the second qubit.
Here are two examples:

Φ(θ)

and N(θ) ,

i.e. a PHASOR acting on the first qubit and a NEGATOR acting on the second qubit, respectively.
These circuits are represented by the 4× 4 unitary matrices









1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ









and
1

2









1 + eiθ 1− eiθ 0 0
1− eiθ 1 + eiθ 0 0

0 0 1 + eiθ 1− eiθ

0 0 1− eiθ 1 + eiθ









,

respectively.
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However, we also introduce more sophisticated gates: the so-called ‘controlled PHASORs’ and
‘controlled NEGATORs’. Two examples are

N(θ)

• and Φ(θ) ,

i.e. a positive-polarity controlled NEGATOR acting on the first qubit, controlled by the second
qubit, and a negative-polarity controlled PHASOR acting on the second qubit, controlled by the
first qubit, respectively. The former symbol is read as follows: ‘if the second qubit equals 1, then
the NEGATOR acts on the first qubit; if, however, the second qubit equals 0, then the NEGATOR

is inactive, i.e. the first qubit undergoes no change’. The latter symbol is read as follows: ‘if
the first qubit equals 0, then the PHASOR acts on the second qubit; if, however, the first qubit
equals 1, then the PHASOR is inactive, i.e. the second qubit undergoes no change’. The matrices
representing these circuit examples are:









1 0 0 0
0 1

2 (1 + eiθ) 0 1
2 (1− eiθ)

0 0 1 0
0 1

2 (1− eiθ) 0 1
2 (1 + eiθ)









and









1 0 0 0
0 eiθ 0 0
0 0 1 0
0 0 0 1









,

respectively.
We now give two examples of a 3-qubit circuit:

N(θ)

• and •
• Φ(θ) ,

i.e. a positive-polarity controlled NEGATOR acting on the first qubit and a mixed-polarity
controlled PHASOR acting on the third qubit. The 8 × 8 matrices representing these circuit
examples are:

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1

2 (1 + eiθ) 0 0 0 1
2 (1− eiθ)

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1

2 (1− eiθ) 0 0 0 1
2 (1 + eiθ)

























and

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 eiθ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























,

respectively. We note the following properties:

• the former matrix has all eight row sums and all eight column sums equal to 1;

• the latter matrix is diagonal and has upper-left entry equal to 1.

Because the multiplication of two square matrices with all line sums equal to 1 automatically
yields a third square matrix with all line sums equal to 1, we can easily demonstrate that an
arbitrary quantum circuit like

• •
•

• • ,
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consisting merely of uncontrolled NEGATORs and controlled NEGATORs is represented by a 2w×2w

unitary matrix with all line sums equal to 1. The n×n unitary matrices with all line sums equal
to 1 form a group XU(n), subgroup of U(n). We thus can say that an arbitrary NEGATOR circuit
is represented by an XU(2w) matrix. A laborious proof [11] demonstrates that the converse
theorem is also valid: any member of XU(2w) can be synthesized by an appropriate string of
(un)controlled NEGATORs.

Because the multiplication of two diagonal square matrices yields a third diagonal square
matrix and because the multiplication of two unitary matrices with first entry equal to 1 yields
a third unitary matrix with first entry equal to 1, we can easily demonstrate that an arbitrary
quantum circuit like

• •
•

• • ,

consisting merely of uncontrolled PHASORs and controlled PHASORs is represented by a 2w × 2w

unitary diagonal matrix with first entry equal to 1. The n × n unitary diagonal matrices with
upper-left entry equal to 1 form a group ZU(n), subgroup of U(n). We thus can say that an
arbitrary PHASOR circuit is represented by a ZU(2w) matrix. The converse theorem is also valid:
any member of ZU(2w) can be synthesized by an appropriate string of (un)controlled PHASORs.

We summarize: the study of NEGATOR and PHASOR circuits leads to the introduction of two
subgroups of the unitary group U(n):

• the subgroup XU(n), consisting of all n× n unitary matrices with all of their 2n line sums
are equal to 1;

• the subgroup ZU(n), consisting of all n×n diagonal unitary matrices with upper-left entry
equal to 1.

These subgroups have properties similar to the three properties of XU(2) and ZU(2), discussed
in the previous section.

(i) The intersection of XU(n) and ZU(n) is minimal, as it is the trivial subgroup consisting of
a single matrix, i.e. the n× n unit matrix.

(ii) The closure of XU(n) and ZU(n) is U(n). Indeed, any U(n) matrix U can be decomposed
as

U = eiα Z1X1Z2X2Z3...Zp−1Xp−1Zp , (3)

with p ≤ n and where all Zj are ZU(n) matrices and all Xj are XU(n) matrices [12].
Because we have the identity

diag(a, a, a, a, a, ..., a, a) = P0 diag(1, a, 1, a, 1, ..., 1, a) P−1
0 diag(1, a, 1, a, 1, ..., 1, a) ,

where a is a short-hand notation for eiα and P0 is the circulant permutation matrix













0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
.
.
.
0 0 0 0 ... 0 1
1 0 0 0 ... 0 0













,

we can conclude that U equals the product of n + 1 or less XU(n) members and n + 2 or
less ZU(n) members.
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(iii) We have that

ZU(n) ⊂ Hn XU(n) Hn and XU(n) ⊃ Hn ZU(n) Hn ,

where Hn is an n×n complex Hadamard matrix [13]. In particular, the group Hn ZU(n) Hn

is the subgroup of XU(n) consisting of all circulant XU(n) matrices. For arbitrary n, one
may choose for Hn the n× n discrete Fourier transform Fn:

Fn =















1 1 1 1 ... 1
1 ω ω2 ω3 ... ωn−1

1 ω2 ω4 ω6 ... ω2(n−1)

...

1 ωn−1 ω2(n−1) ω3(n−1) ... ω(n−1)(n−1)















,

where ω is the primitive n th root of unity. For n = 2w, also the real Hadamard matrix
H⊗w (Kronecker product of 2× 2 Hadamard matrices H) is a possible choice:

(

1 1
1 −1

)

⊗
(

1 1
1 −1

)

⊗ ...⊗
(

1 1
1 −1

)

,

with w factors in the tensor product.

Because of the identity

diag(1, a2, a3, ..., an−1, an) = diag(1, a2, 1, ..., 1, 1) diag(1, 1, a3, ..., 1, 1) ...

diag(1, 1, 1, ..., an−1, 1) diag(1, 1, 1, ..., 1, an) ,

it is clear that the group ZU(n) is isomorphic to the direct product U(1)n−1 and thus is an
(n− 1)-dimensional Lie group. The group XU(n) is isomorphic to its conjugate

FnXU(n)F−1
n .

One can verify that, if X is an XU(n) matrix, then the matrix FnXF
−1
n is an n × n unitary

matrix with first row 1, 0, 0, ..., 0 and thus also first column 1, 0, 0, ..., 0. Conversely, it is possible
to prove that a matrix of the form

X = Fn

(

1 01×(n−1)

0(n−1)×1 Y

)

F−1
n , (4)

where 0a×b denotes the a×b zero matrix and Y is an arbitrary member of U(n−1), is an XU(n)
matrix [11]. Thus XU(n) is isomorphic to U(n − 1) and therefore is an (n − 1)2-dimensional
subgroup of the n2-dimensional group U(n). We summarize by noting the beautiful symmetry

ZU(n) ∼= U(1)n−1 and XU(n) ∼= U(n− 1)1 .

In the past, properties of the subgroup XU(n) of U(n) have not been studied. Here, we note
in particular the group chain

P(n) ⊂ XU(n) ⊂ U(n) ,

where P(n) denotes the finite group of n × n permutation matrices. As all classical reversible
circuits (acting on w bits) are represented by a matrix from P(2w), we may say that the group
XU(2w) represents computers, situated ‘between’ classical computers and full-fledged quantum
computers.
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Decomposition (3) should be compared with other factorizations of U(n), described in the
literature. Diţă [14] has proposed a product DnOnDn−1On−1...D2O2D1, where all Dj are
diagonal unitary matrices and all Oj are orthogonal matrices. Reck et al. [15] have derived a
decomposition of the form T1T2...TpD, where all Tj are 2-parameter unitary matrices (describing
a beam splitter plus phase shifter), D is a diagonal matrix, and p ≤ n(n − 1)/2. Rowe et al.
[16] have applied two mutually commuting subgroups of U(n). Finally, Patera and Zassenhaus
[17] have introduced the generalized Pauli group Pn. We note that, for odd n, this finite group
is generated by the permutation matrix P0 together with a particular member of ZU(n), i.e.
diag(1, ω, ω2, ..., ωn−1), where ω is the primitive n th root of unity.

3. Short decomposition of an arbitrary unitary matrix

In Reference [18], it is conjectured that a shorter decomposition (3) exists: with p ≤ 2. Thus an
arbitrary member U of U(n) may be decomposed as

U = exp(iα)Z1XZ2 , (5)

with X a member of XU(n) and both Z1 and Z2 member of ZU(n). For n = 2, the conjecture is
proved by eqns (2). For an arbitrary unitary matrix U with n > 2, a recent (non-constructive)
proof is provided by Idel and Wolf [19], based on symplective topology. For a given unitary
matrix U , De Vos and De Baerdemacker [18] provide a numerical procedure (reminiscent of
Sinkhorn’s construction [20] of a doubly stochastic matrix) in order to find the scalar exp(iα),
as well as the three matrices Z1, X, and Z2. For thousands of examples (from 3 ≤ n ≤ 32), the
algorithm converges to a solution. We conjecture that the algorithm always converges.

Thus any quantum circuit looks like

Z2 X Z1 eiα

,

i.e. the cascade of an overall phase factor, an input section consisting merely of (un)controlled
PHASORs, a core section consisting merely of (un)controlled NEGATORs, and an output section
consisting merely of (un)controlled PHASORs. In turn, the phase factor eiα may be decomposed
into two NEGATOR circuits (i.e. two classical cyclic-shift circuits [21] [22]) and two uncontrolled
PHASORs. We note that this circuit decomposition is not unique, because the matrix
decomposition (5) is not unique. See Appendix.

Instead of synthesizing a quantum circuit with X and Z building-blocks, one can also opt for
X and Hadamard blocks. Indeed, introducing the circulant XU(2w) matrices

X1 = H⊗w Z1 H
⊗w

X2 = H⊗w Z2 H
⊗w ,

we have

Z2 X Z1

H

X2

H

X

H

X1

H

= H H H H

H H H H .

Thus any quantum computer (up to an overall phase) consists of three (or less) NEGATOR circuits
and 4w (or less) HADAMARD gates.
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By applying alternatingly (4) and (5), again and again, i.e. for n = 2w, n = 2w−1, n = 2w−2,
..., and finally for n = 2, we find yet another decomposition of an arbitrary quantum computer
[19] [23]:

R4 T−1
4 R3 T−1

3 R2 T−1
2 L1 T2 L2 T3 L3 T4 L4 eiα4

.

Here the circuits T2, T3, ..., and T2w implement the constant block-diagonal matrices

Tj =

(

12w−j
Fj

)

,

where 1a is the a × a unit matrix and Fj is the j × j discrete Fourier transform. The 2w − 1
circuits Rj and the 2w circuits Lj are

• either ZU(2w) circuits

• or circulant XU(2w) circuits.

4. Conclusion

Like the qubit being a quantum counterpart of the classical bit, the NEGATOR gate is the quantum
counterpart of the classical NOT gate and the controlled NEGATOR is the quantum counterpart of
the classical controlled NOT (a.k.a. the TOFFOLI gate). Any quantum circuit can be built from
(un)controlled NEGATORs, supplemented with either (un)controlled PHASOR gates or HADAMARD

gates.

Appendix

The matrix decomposition (5) is not unique. For n = 2, eqns (2) show two different solutions.
E.g. the 2× 2 discrete Fourier transform (a.k.a. the Hadamard transform)

F2 =
1√
2

(

1 1
1 −1

)

has two and only two decompositions:

1− i√
2

(

1 0
0 i

)

1

2

(

1 + i 1− i
1− i 1 + i

)(

1 0
0 i

)

and
1 + i√

2

(

1 0
0 −i

)

1

2

(

1− i 1 + i
1 + i 1− i

)(

1 0
0 −i

)

.

However, if, in (1), either cos(ϕ) or sin(ϕ) is zero, decompositions (2) constitute an infinity of
decompositions. This is confirmed by the identities

(

eix 0
0 eiy

)

= eix
(

1 0
0 e−ix+iz

)(

1 0
0 1

)(

1 0
0 eiy−iz

)

and

(

0 eix

eiy 0

)

= eiz
(

1 0
0 eiy−iz

)(

0 1
1 0

)(

1 0
0 eix−iz

)

,

where, in both cases, z may take any value.
If n > 2, then an infinity of decompositions of the matrix U arises whenever the matrix

contains a row with n − 1 zeroes and thus automatically also a column with n − 1 zeroes
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(provided that row is not the first row and that column is not the first column). If no such row
(and column) is present, there may be either a finite or an infinite number of decompositions.
The former is illustrated by the example of the 3× 3 discrete Fourier transform:

F3 =
1√
3





1 1 1
1 ω ω2

1 ω2 ω



 ,

where ω is the primitive cubic root of unity, i.e. −1
2 + i

√
3
2 . Indeed, for this matrix six and only

six decompositions are possible:

−iω





1 0 0
0 1 0
0 0 ω2





1

2
√
3





√
3− i

√
3− i 2i√

3− i 2i
√
3− i

2i
√
3− i

√
3− i









1 0 0
0 1 0
0 0 ω2



 ,

−iω





1 0 0
0 ω2 0
0 0 1





1

2
√
3





√
3− i 2i

√
3− i

2i
√
3− i

√
3− i√

3− i
√
3− i 2i









1 0 0
0 ω2 0
0 0 1



 ,

−i





1 0 0
0 ω 0
0 0 ω





1

2
√
3





2i
√
3− i

√
3− i√

3− i
√
3− i 2i√

3− i 2i
√
3− i









1 0 0
0 ω 0
0 0 ω



 ,

iω2





1 0 0
0 ω 0
0 0 1





1

2
√
3





√
3 + i

√
3 + i −2i

−2i
√
3 + i

√
3 + i√

3 + i −2i
√
3 + i









1 0 0
0 1 0
0 0 ω



 ,

iω2





1 0 0
0 1 0
0 0 ω





1

2
√
3





√
3 + i −2i

√
3 + i√

3 + i
√
3 + i −2i

−2i
√
3 + i

√
3 + i









1 0 0
0 ω 0
0 0 1



 ,

and

i





1 0 0
0 ω2 0
0 0 ω2





1

2
√
3





−2i
√
3 + i

√
3 + i√

3 + i −2i
√
3 + i√

3 + i
√
3 + i −2i









1 0 0
0 ω2 0
0 0 ω2



 .

The latter is illustrated by the decomposition of the 4× 4 Fourier matrix:

F4 =
1

2









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









= 1









1 0 0 0
0 a 0 0
0 0 1 0
0 0 0 −a









1

2









1 −ia 1 ia
1/a 1 −1/a 1
1 ia 1 −ia

−1/a 1 1/a 1

















1 0 0 0
0 i/a 0 0
0 0 1 0
0 0 0 −i/a









=
1

b









1 0 0 0
0 b 0 0
0 0 −1 0
0 0 0 b









1

2









b 1 −b 1
1 i/b 1 −i/b
−b 1 b 1
1 −i/b 1 i/b

















1 0 0 0
0 b 0 0
0 0 −1 0
0 0 0 b









,
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where both a and b are allowed to have any value on the unit circle of the complex plane.
The Fourier matrices Fn not only are important in quantum computing [1], but also in

quantum optics. In the latter application, they constitute the canonical form of the n×n unitary
matrices with all entries having the same modulus (i.e. having modulus 1/

√
n ). Constant-

modulus unitary matrices are important for multiports (particle beam splitters) [24].
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