LQ optimal control for partially specified input noise

Alexander Erreygers Jasper De Bock Gert de Cooman Arthur Van Camp

Ghent University

28th European Conference on Operational Research

The *controller* is interested in the system

$$X_{k+1} = aX_k + bu_k + W_k, (1)$$

for $k \in N = \{0, 1, \dots, n\}$, where $n \in \mathbb{N}$, $a \in \mathbb{R}$ and $b \in \mathbb{R} \setminus \{0\}$, where

 X_{k+1} is the real-valued *state*, u_k is the real-valued *control input*, W_k is the real-valued *stochastic noise*.

In general, system parameters a and b can be time dependent.

The controller is interested in the system

$$X_{k+1} = aX_k + bu_k + W_k. {1}$$

Observation assumptions

- Before applying u_k , the controller observes the actual value x_k of X_k (hence $X_0 \equiv x_0$).
- 2 The controller has perfect recall.

The *controller* is interested in the system

$$X_{k+1} = aX_k + b\phi_k(X^k) + W_k. {1}$$

Observation assumptions

- Before applying u_k , the controller observes the actual value x_k of X_k (hence $X_0 \equiv x_0$).
- 2 The controller has perfect recall.

Controller determines u_k from state history $x^k := (x_0, \dots, x_k)$:

$$u_k = \phi_k(x^k).$$

 $\phi_k: \mathbb{R}^{k+1} \to \mathbb{R}$ is a feedback function,

 $\phi := (\phi_0, \dots, \phi_n)$ is a control policy,

denotes the set of all control policies.

The *controller* is interested in the system

$$X_{k+1} = aX_k + b\phi_k(X^k) + W_k. {1}$$

Observation assumptions

- Before applying u_k , the controller observes the actual value x_k of X_k (hence $X_0 \equiv x_0$).
- The controller has perfect recall.

Controller knows x^k and $\phi \to \text{can calculate } w^{k-1}$.

For any control policy $\phi \in \Phi$, any $k \in N$ and any state history $x^k \in \mathbb{R}^{k+1}$ we define the *quadratic cost functional* as

$$J[\phi|x^k] := \sum_{\ell=k}^n r\phi_{\ell}(x^k, X_{k+1:\ell})^2 + qX_{\ell+1}^2,$$

where $q \ge 0$ and r > 0 are real-valued coefficients.

Precise noise model

Definition (Precise noise model or PNM)

The controller's beliefs about the noise W_0, \ldots, W_n are modelled using a linear expectation operator E.

For any control policy $\phi \in \Phi$, any $k \in N$ and any state history $x^k \in \mathbb{R}^{k+1}$ we define the *quadratic cost functional* as

$$J[\phi|x^k] := \sum_{\ell=k}^n r\phi_{\ell}(x^k, X_{k+1:\ell})^2 + qX_{\ell+1}^2,$$

where $q \ge 0$ and r > 0 are real-valued coefficients.

Definition (Optimality)

A control policy $\hat{\phi}$ is *optimal* if for all x_0

$$\hat{\phi} \in \operatorname*{arg\ min}_{\phi \in \Phi} \mathrm{E}(J[\phi|x_0]).$$

Assume that at time k the controller knows the state history \boldsymbol{x}^k and noise history $\boldsymbol{w}^{k-1}.$

We should only compare control policies $\phi \in \Phi$ that could have resulted in x^k and w^{k-1} , i.e. such that x^k , w^{k-1} and ϕ are a solution of the system dynamics.

$$\Phi(x^k,w^{k-1})\coloneqq \left\{\phi\in\Phi\colon \phi,x^k \text{ and } w^{k-1} \text{ are } \right.$$
 a solution of the system dynamics. \right\}

Assume that at time k the controller knows the state history x^k and noise history w^{k-1} .

We should only compare control policies $\phi \in \Phi$ that could have resulted in x^k and w^{k-1} , i.e. such that x^k , w^{k-1} and ϕ are a solution of the system dynamics.

$$\Phi(x^k,w^{k-1}) \coloneqq \left\{\phi \in \Phi \colon \phi, x^k \text{ and } w^{k-1} \text{ are } \right.$$
 a solution of the system dynamics. \right\}

Definition (Optimality)

A control policy $\hat{\phi}$ is optimal for the state history x^k and the noise history w^{k-1} if

$$\hat{\phi} \in \operatorname*{arg\ min}_{\phi \in \Phi(x^k, w^{k-1})} \mathrm{E}(J[\phi|x^k]|w^{k-1}).$$

The principle of optimality

Principle of optimality

A control policy that is "optimal" for the "current state" should also be optimal for the "remaining states" it can end up in.

The principle of optimality

Principle of optimality

A control policy that is "optimal" for the "current state" should also be optimal for the "remaining states" it can end up in.

Assume that $\hat{\phi}$ is optimal for all $x_0 \in \mathbb{R}$.

The controller

- 1 observes x_0 ,
- **2** applies $u_0 = \phi_0(x_0)$,
- $\mathbf{3}$ observes x_1 and computes w_0 .

Is $\hat{\phi}$ optimal for (x_0, x_1) and w_0 ?

The principle of optimality

Principle of optimality

A control policy that is "optimal" for the "current state" should also be optimal for the "remaining states" it can end up in.

Assume that $\hat{\phi}$ is optimal for all $x_0 \in \mathbb{R}$.

The controller

- 1 observes x_0 ,
- **2** applies $u_0 = \phi_0(x_0)$,
- $\mathbf{3}$ observes x_1 and computes w_0 .

Is $\hat{\phi}$ optimal for (x_0, x_1) and w_0 ? Not necessarily!

Definition (Complete optimality)

If for all $k\in N$ the control policy $\phi\in\Phi$ is optimal for all x^k and w^{k-1} such that x^k , w^{k-1} and ϕ are compatible, then it is completely optimal.

Theorem

The unique completely optimal control policy $\hat{\phi}$ is given by

$$\hat{\phi}_k(x^k) := -\tilde{r}_k b \left(m_{k+1} a x_k + h_{k|w^{k-1}} \right).$$

 \tilde{r}_k and m_{k+1} are derived from backwards recursive relations.

Feedforward $h_{k\mid w^{k-1}}$ is derived from $h_{n+1\mid w^n}\coloneqq 0$ and

$$h_{k|w^{k-1}} := a\tilde{r}_{k+1}rE(h_{k+1|w^{k-1},W_k}|w^{k-1}) + m_{k+1}E(W_k|w^{k-1}).$$

Theorem

The unique completely optimal control policy $\hat{\phi}$ is given by

$$\hat{\phi}_k(x^k) \coloneqq -\tilde{r}_k b \left(m_{k+1} a x_k + h_{k|w^{k-1}} \right).$$

 \tilde{r}_k and m_{k+1} are derived from backwards recursive relations.

Feedforward $h_{k\mid w^{k-1}}$ is derived from $h_{n+1\mid w^n}\coloneqq 0$ and

$$h_{k|w^{k-1}} \coloneqq a\tilde{r}_{k+1}r\mathrm{E}(h_{k+1|w^{k-1},W_k}|w^{k-1}) + m_{k+1}\mathrm{E}(W_k|w^{k-1}).$$

- Precise specification of noise model is necessary.
- Calculating the feedforward is intractable.
- Backwards recursive calculations
- Almost immediately generalisable to time-dependent a_k , b_k , r_k and q_{k+1} and/or multi-dimensional systems.

Disadvantages

Calculating the feedforward is intractable.

Feedforward $h_{k\mid w^{k-1}}$ is derived from $h_{n+1\mid w^n}\coloneqq 0$ and

$$h_{k \mid w^{k-1}} \coloneqq a \tilde{r}_{k+1} r \mathbf{E}(h_{k+1 \mid w^{k-1}, W_k} | w^{k-1}) + m_{k+1} \mathbf{E}(W_k | w^{k-1}).$$

Disadvantages

- Calculating the feedforward is intractable.
- White noise model: W_0, \ldots, W_n are mutually independent. Feedforward h_k is derived from $h_{n+1} := 0$ and

$$h_k := a\tilde{r}_{k+1}rh_{k+1} + m_{k+1}E(W_k).$$

Disadvantages

- Calculating the feedforward is intractable.
- White noise model: W_0, \dots, W_n are mutually independent. Feedforward h_k is derived from $h_{n+1} := 0$ and

$$h_k := a\tilde{r}_{k+1}rh_{k+1} + m_{k+1}E(W_k).$$

- Backwards recursive calculations
- White noise model & stationarity simplify these calculations. If $\mathrm{E}(W_k) \equiv \mathrm{E}(W)$ for all $k \in N$, then

$$m_{k+1} \xrightarrow[n \to \infty]{} m, \qquad \tilde{r}_k \xrightarrow[n \to \infty]{} \tilde{r}, \qquad h_k \xrightarrow[n \to \infty]{} h.$$

Partially specified noise model

Precise specification of noise model is necessary.

Partially specified noise model

Precise specification of noise model is necessary.

Definition (Partially specified noise model or PSNM)

The partially specified noise model $\mathcal E$ is the largest subset of the set of all precise noise models such that for all $E\in\mathcal E$, all $k\in N$ and all w^{k-1}

$$\underline{\mathbf{E}}(W_k) \le \mathbf{E}(W_k|w^{k-1}) \le \overline{\mathbf{E}}(W_k).$$

Note: \mathcal{E} does not assume independence!

Partially specified noise model

Precise specification of noise model is necessary.

Definition (Partially specified noise model or PSNM)

The partially specified noise model $\mathcal E$ is the largest subset of the set of all precise noise models such that for all $E\in\mathcal E$, all $k\in N$ and all w^{k-1}

$$\underline{\mathbf{E}}(W_k) \le \mathbf{E}(W_k|w^{k-1}) \le \overline{\mathbf{E}}(W_k).$$

Note: \mathcal{E} does not assume independence!

Definition (E-admissibility)

A control policy is *E-admissible* if it is completely optimal for at least one precise noise model in the partially specified noise model.

From the definition of E-admissibility, it follows immediately that any E-admissible control policy has the form

$$\phi_k(x^k) = -\tilde{r}_k b \left(m_{k+1} a x_k + h_{k|w^{k-1}} \right).$$

Theorem

For any E-admissible control policy, the feedfworward term $h_{k|w^{k-1}}$ is bounded: for all $k \in N$ and for all noise histories w^{k-1} ,

$$\underline{h}_k \le h_{k|w^{k-1}} \le \overline{h}_k.$$

Moreover, any $h_{k|w^{k-1}} \in [\underline{h}_k, \overline{h}_k]$ is reached by some $\mathrm{E} \in \mathcal{E}.$

Strict bounds \underline{h}_k and \overline{h}_k are derived from $[\underline{h}_{n+1},\overline{h}_{n+1}]\coloneqq 0$ and

$$[\underline{h}_k,\overline{h}_k] \coloneqq a\tilde{r}_{k+1}r[\underline{h}_{k+1},\overline{h}_{k+1}] + m_{k+1}[\underline{\mathbf{E}}(W_k),\overline{\mathbf{E}}(W_k)].$$

Theorem

For any E-admissible control policy, the feedfworward term $h_{k|w^{k-1}}$ is bounded: for all $k \in N$ and for all noise histories w^{k-1} ,

$$\underline{h}_k \le h_{k|w^{k-1}} \le \overline{h}_k.$$

Moreover, any $h_{k|w^{k-1}} \in [\underline{h}_k, \overline{h}_k]$ is reached by some $\mathrm{E} \in \mathcal{E}.$

- Imprecise specification
- Computation of \underline{h}_k and \overline{h}_k is tractable.
- Easily generalised to a_k, b_k, r_k and q_{k+1} .

- Which control policy to apply?
- Backwards recursive calculations
- Generalisation to multi-dimensional systems is not immediate.

Stationarity and open questions

- Backwards recursive calculations
- Stationarity of bounds on expectation simplifies these calculations.

If
$$\underline{\mathrm{E}}(W_k) \equiv \underline{\mathrm{E}}(W)$$
 and $\overline{\mathrm{E}}(W_k) \equiv \overline{\mathrm{E}}(W)$ for all $k \in N$, then

$$m_{k+1} \xrightarrow[n \to \infty]{} m, \quad \tilde{r}_k \xrightarrow[n \to \infty]{} \tilde{r}, \quad \underline{h}_k \xrightarrow[n \to \infty]{} \underline{h}, \quad \overline{h}_k \xrightarrow[n \to \infty]{} \overline{h}.$$

Stationarity and open questions

- Backwards recursive calculations
- Stationarity of bounds on expectation simplifies these calculations.

If
$$\underline{\mathrm{E}}(W_k) \equiv \underline{\mathrm{E}}(W)$$
 and $\overline{\mathrm{E}}(W_k) \equiv \overline{\mathrm{E}}(W)$ for all $k \in N$, then

$$m_{k+1} \xrightarrow[n \to \infty]{} m, \quad \tilde{r}_k \xrightarrow[n \to \infty]{} \tilde{r}, \quad \underline{h}_k \xrightarrow[n \to \infty]{} \underline{h}, \quad \overline{h}_k \xrightarrow[n \to \infty]{} \overline{h}.$$

- Which control policy to apply?
- Possibility of using a secondary decision criterion.

■ The partially specified noise model only assumes bounds on the conditional expectation of the noise.

- The *partially specified* noise model only assumes bounds on the conditional expectation of the noise.
- Every E-admissible control policy is a combination of the same state feedback and possibly different noise feedforward.

- The *partially specified* noise model only assumes bounds on the conditional expectation of the noise.
- Every E-admissible control policy is a combination of the same state feedback and possibly different noise feedforward.
- Tight bounds on E-admissible noise feedforward can be easily calculated.
 - How to choose which element in the feedforward interval to apply remains an open question.

- The *partially specified* noise model only assumes bounds on the conditional expectation of the noise.
- Every E-admissible control policy is a combination of the same state feedback and possibly different noise feedforward.
- Tight bounds on E-admissible noise feedforward can be easily calculated.
 - How to choose which element in the feedforward interval to apply remains an open question.
- Unfortunately, these results are not immediately generalised to multi-dimensional systems.