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Abstract: In this paper, isogeometric analysis (IGA) based on a generalized unconstrained approach for 

nonlinear analysis of smart composite plates is investigated. In composite plates, the mechanical 

displacement field is approximated according to the proposal model and the nonlinear formulation for plates 

is based on the von Kármán strains. Through the thickness of each piezoelectric layer, the electric potential 

is assumed linearly. For active control of the piezoelectric composite plates, a close-loop system is used. 

Various numerical examples are investigated to show high accuracy and reliability of the proposed method. 
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1. INTRODUCTION 

Piezoelectric materials belong to a smart material class that expresses electromechanical coupling. The main 

feature of smart materials is transformation between mechanical energy and electric energy. When the 

application of electric field to piezoelectric structures is considered, the mechanical deformation is generated. 

With the advantages of piezoelectric materials, various numerical methods have been devised. Mitchell and 

Reddy [1] presented the classical plate theory (CPT) using the third order shear deformation theory (TSDT) 

to obtain the Navier solution for composite laminates with piezoelectric lamina. The radial point interpolation 

method (RPIM) combined with the first order shear deformation theory (FSDT) and the CPT with rectangular 

plate bending element were investigated by Liu et al. [2] to compute and simulate the static deformation and 

responses of smart plates. A HSDT-layerwise generalized finite element formulation [3] and the layerwise 

based on analytical formulation [4] were investigated to study piezoelectric composite plates. For vibration 

control, Bailey et al [5] and Shen et al. [6] investigated smart beams integrated with layers using analytical 

solutions. Wang et al. [7] used FEM to investigate dynamic stability of piezoelectric composite plates, where 

the governing equations of motion using Lyapunov’s energy with active damping was used. Recently, 

isogeometric analysis (IGA) has been developed to investigate the piezoelectric composite plates [8] and 

plates/shells [9-13]. However, nonlinear transient analysis has not considered in their previous work. Hence, 

this paper tries to fill this gap by using IGA based on the general unconstrained third order shear deformation 
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theory (UTSDT). For reference, it is termed as IGA-UHSDT. The method will be applied for nonlinear analysis 

of piezoelectric composite plates. The IGA-UHSDT is used to approximate the displacement field of smart 

plates. Through the thickness of each piezoelectric layer, the electric potential is assumed linearly. The 

nonlinear formulation for plates is formed in the total Lagrange approach based on the von Kármán strains. 

The reliability and accuracy of the method are confirmed by numerical examples. 

2. FORMULATION OF PIEZOELECTRICITY 

Consider a piezoelectric composite plate as shown in Figure 1, the lower and upper layers of the composite 

plate are piezoelectric layers. The UHSDT is used to approximate the variable displacements for the 

composite plate, while the electrical displacements are assumed to be independent. 

 

Fig. 1 Configuration of a piezoelectric laminated composite plate. 

2.1. UHSDT 

The unconstrained theory based on HSDT can be rewritten  
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where u0, u1, u2, v0, v1, v2 and w are displacement variables. For UTSDT in [14], the function f(z) = z3 is used. 

In what follows, we introduce a new function ( )f(z)= arctan z that ensures that its first derivative is nonlinear 

through the plate thickness and solutions are more accurate than for the case of f(z) = z3. 

For a plate bending, the strain vector is represented by: 
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The material behavior of smart composite plates is expressed as follows [15]: 
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where   and σ  are the strain vector and the stress vector, respectively; g denotes the dielectric constant 

matrix and D is the dielectric displacement; e is the piezoelectric constant; E, the electric field vector, can be 

defined as: 

gradE    (4) 

in which   is the electric potential field; and c, the elasticity matrix, is defined as: 
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where 𝑄̅𝑖𝑗 is calculated as in [1].  

2.2. The piezoelectric plate formulation based on NURBS basic 

functions 

2.2.1. Mechanical displacement 

Using NURBS basic function, the field u of the composite plate is approximated as: 
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where  0 0 1 1 2 2

T

I I I I I I I Iu v u v u v wd , and NI is the shape function as defined in [16]. 

The strains can be rewritten as: 
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2.2.2. Electric potential field 

The electric potential field is approximated as follows [15]: 

( )i i iz   N   (10) 

where 
i

N  is the shape functions 

The electric field E in Eq. (4) can be rewritten: 
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2.2.3. Governing equations 

The equations for the smart plate are written as: 
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and for dynamic control 
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in which q0 is a uniform load; 0 0 0 0 0 0 ;IN  N
 
m is defined by: 
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3. NUMERICAL RESULTS 

3.1. Static analysis 

A square smart plate with length 20 cm under a uniform load q = 100 N/m2 is considered. The plate has six 

layers: two outer piezo layers represented by pie and four composite layers. Each layer thickness of the non-

piezoelectric composite plate is 0.25 mm and the thickness of the piezo layer is 0.1 mm. The composite layers 

are made of T300/976 graphite/epoxy and the piezo-ceramic layers are PZTG1195N. First, the effect of input 

voltages on deflection of the CFFF plate [pie/-45/45]as is shown in Figure 2a. It can be seen, the present 

results agree well with those of Liu et al. (2004). Furthermore, the deflection of the plate using only mesh of 

9×9 elements with different boundary conditions (CFFF, SSFF, SSSS) is shown in Figure 2b. Again, it can be 

seen that the present method agrees very well with those of RPIM [2]. 

  

(a) (b) 

Fig. 2 (a) Effect of input voltages on deflection of the piezoelectric composite plate; (b) The deflection of 

the piezoelectric composite plates with various boundary conditions 
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Fig. 3 Normalized central defections of the plate under step uniform load  

3.2. Nonlinear analysis 

3.2.1. An orthotropic plate 

In this section, a SSSS square plate under a uniform loading of q0 = 1 MPa with an aim to verify the accuracy 

of the present method for geometrically nonlinear transient analysis is studied. Material properties and the 

geometry are considered as follows: E1 = 525 GPa, E2 = 21 GPa, G12 = G23 = G13 = 10.5 GPa, ν = 0.25, ρ = 

800 kg/m3, L = 250 mm, thickness h = 5 mm. Figure 3 shows the normalized central deflection, /w w h , 

of the plate. It can be seen that deflection responses of present method match well with those of finite strip 

method (FSM) [17]. 

3.2.2. Nonlinear control 

We now consider a plate [pie/-45/45]s under step load. Figure 4 shows nonlinear transient vibrations of the 

central point of the plate under a closed-loop control. We observe that the response with control is smaller 

than those without control, as expected. 

 

Fig. 4 Effect of the control gain on the nonlinear response of the piezoelectric composite plate. 

4. CONCLUSIONS 

This paper presents a simple and effective approach based on the combination of IGA and a generalized 

unconstrained approach for dynamic control and optimization of smart piezoelectric composite plates. The 

new function through the plate thickness for the UHSDT is introduced, which can achieve any desired degree 
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of smoothness through the choice of the interpolation order and easily fulfills the C1-continuity requirements 

for plate elements stemming from the HSDT. In analyses, the present approach would provide a reliable 

source of reference when calculating laminated composite plates with other methods. 
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