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Abstract—This paper presents a location tracking system that
improves its performance by mitigating the influence caused by
the human body of the user being tracked. The presence of such a
user will influence the signal path between a body-worn mobile
device and a receiving node. This influence will vary with the
user’s location and orientation and, as a result, the performance
will deteriorate. By making use of the user’s orientation towards
the fixed infrastructure nodes, the influence of the body can be
explicitly compensated, hereby improving the tracking accuracy.
The overall system performance is extensively verified with
experiments on a building-wide testbed. Compensating for this
human body shadowing results in a relative improvement of
23.6%.

Index Terms—Localization, Tracking, Human Body Shadow-
ing, Wireless Networks, Indoor Environment

I. INTRODUCTION

Indoor localization and tracking systems have gained huge
interest because of the many context-aware applications that
have emerged lately. These applications are situated in many
domains e.g., healthcare, industrial, cultural sector, etc. Many
localization systems already try to cope with performance
deterioration caused by multipath fading and diffraction. How-
ever, an important factor is the influence caused by the human
body itself. The presence of a user’s body can block the
line-of-sight (LoS) between a body-worn mobile device (or
tag) and a receiving node, and cause additional losses. These
additional losses are currently not accounted for and will
generally decrease the accuracy of received signal strength
indicator (RSSI) based localization systems. This effect has
already been noted in literature but is often still neglected [1].
Many localization applications verify their developed system
by stepwise moving a device placed on a tripod, hereby explic-
itly removing the human from the equation. Practical human
tracking applications however, always imply the presence of
a user’s body. In this work, a novel approach to mitigate the
human body shadowing is investigated. By making use of a
human body loss model and taking into account the body-worn
tag’s orientation towards the fixed infrastructure, the user’s
influence can be explicitly compensated. The orientation of a
user is determined without making use of the classical compass
or gyroscope approaches but with a novel orientation estimator
built on top of our tracking algorithm.

II. RELATED WORK

In [2], a body shadowing mitigation method is used on
top of an RSSI-based Monte Carlo localization technique and

they achieve meter scale accuracies for a wrist-worn personnel
tracking tag. The shadowing caused by a user’s body is
mitigated by using LoS and non-line-of-sight (NLoS) channel
models. A disadvantage of this approach is that it depends on
a manual differentiation of the LoS conditions and separate
measurements need to be conducted for each LoS condition.
In [3], video cameras are used to detect the human orientation
and an empirical compensation model is used to compensate
for body electronic interference. In [4], multiple sensors are
placed on a user and the measured power level values are used
for estimating the position and orientation of a user in a single
room. They present a theoretical procedure to evaluate the
maximum attainable performance with RSSI. Their analysis
is based on ray-tracing to compute a fine grid of RSSI values
and a maximum-likelihood approach for localization. In [5],
a fingerprinting system based on neural networks is used
for indoor localization with Bluetooth devices. They used
a compass module to provide information about the user’s
orientation which improves the selection of the most adequate
neural network to use. The achieved results are highly accurate
but a lot of training data is needed because for every user
orientation a neural network needs to be trained. In [6], [7]
the losses caused by a human body are used as an advantage,
they ask the user to rotate in place, simulating the behavior
of a directional antenna. This directional analysis technique is
used to localize an outdoor access point (AP) in [6] and in [7]
this is used to know your own location.

In our work, the user’s orientation is estimated based on
previous positions so there is no need for manual differenti-
ation [2], extensive measurements [2], [5], video cameras [3]
or orientation tracking sensors like accelerometers, gyroscopes
and compasses [5]. The experimental validation is done at
2.4 GHz using ZigBee nodes, on a building-wide testbed, not
limited to a single room or theoretical framework [4].

III. OVERVIEW OF THE SYSTEM

In this section, a complete overview of the system is given.
First, the tracking algorithm that serves as a basis for this
work is explained. Then, the impact of the human body on
the received signal strength is verified. Next, the solution to
mitigate this body shadowing effect is presented. A flow graph
of the complete system can be found in Figure 1.

The body-worn tag broadcasts packets that are received
by the APs (fixed infastructure). The measured RSSI values
and the tag’s position are passed to the compensation model.
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Figure 1: Flow graph of the system

This model uses the angle from the orientation estimator and
the locations of the APs from the floor plan, to determine
the influence caused by the user’s body (Section III-C). The
compensated RSSI values are passed to the tracking algorithm
(Section III-A). This algorithm uses a fingerprint database and
a floor plan (for environmental data and the locations of the
APs), as additional inputs. The predicted current and previous
locations are fed back to the orientation estimator to estimate
the next orientation.

A. Tracking algorithm

A Viterbi-like tracking algorithm that uses off-the-shelf
devices and the well-known RSSI fingerprinting technique
serves as starting point for this work [8]. The environment of
the user that is being tracked and a motion model are used as
constraints to determine the most likely sequence of positions
(path) instead of only the most likely current position (Viterbi
principle). The following cost function is used to determine
the most likely path:

Costi,T =
∑T

t=1

∑N
n=1 |RSSImeas

t,n −RSSIreft,n,i| (1)

Costi,T is the associated cost of the ith path stored in
memory at time step T and T is the number of time steps that
went by since the tracking began. N is the number of APs
that measure the RSSI values from the packets broadcasted
by the body-worn tag, RSSImeas

t,n is the RSSI measurement
at time step t from AP n and RSSIreft,n,i is the reference RSSI
value from AP n for the position along path i at time step t.
The last position of the path with the lowest associated cost is
taken as most likely current location. The calculations of paths
and costs are not restarted every time a new measurement
is received but the paths and costs from a previous iteration
serve as input for the current iteration along with the new
measurements. The reference RSSI values are stored in a
fingerprint database and are derived from a path loss (PL)
value calculated with a theoretical model from a network
planner [9]:

PLref = PL0 + 10n log10

(
d
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)
︸ ︷︷ ︸
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+
∑
i

LWi︸ ︷︷ ︸
cumulated wall loss

+
∑
j

LBj︸ ︷︷ ︸
interaction loss

[dB] (2)

PLref [dB] is the total path loss calculated with the
theoretical model, PL0 [dB] is the path loss at a reference
distance d0 [m], n [-] is the path loss exponent and d [m] is
the distance along the path between transmitter and receiver.
The first two terms represent the path loss due to the traveled
distance (distance loss), the third term (cumulated wall loss)
is the sum of all wall losses LWi when a signal propagates
through a wall Wi and the fourth term (interaction loss)
takes into account the cumulated losses LBj

caused by all
propagation direction changes Bj of the propagation path from
transmitter to receiver. Using a theoretical model avoids an
expensive and time consuming measurement campaign but
allows an immediate deployment at the expense of a slightly
reduced accuracy.

B. Problem: human body shadowing

Human body shadowing occurs when the signal path be-
tween a body-worn mobile tag and a receiving node is com-
pletely or partly blocked. As already mentioned, the presence
of a human body can influence the exchanged radio-frequency
signals because of the large amount of water present in the
human body (around 65%). This influence manifests itself
especially as a drop in signal strength; additional losses of
around 10 to 30 dB are reported in literature [6]. To verify
this effect, an experiment was conducted: a user was asked to
turn 360◦ around its axis, whilst wearing a mobile tag on his
chest and back (see Figure 2a and 2b). Every 15 seconds the
user turns 45◦, taking 2 minutes for a full rotation. The RSSI
values from the packets sent by the mobile tags are measured
by forty fixed APs (the blue dots in Figure 3, for more details
on this testbed, see Section IV). In Figure 4, the measured
RSSI values as function of the user’s orientation is shown for
a nearby (12 m) and far away (66 m) AP. The location of the
user and APs are indicated with a gold circle in Figure 3. An
averaging window of 15 seconds was used.

(a) Chest (b) Back

Figure 2: Body-worn tags (experiment)

From Figure 4, it is immediately clear that the orientation
of a user has a significant influence on the measured RSSI
values (on top of the variance caused by multipath). A high
RSSI value measured by the chest tag corresponds almost



Figure 3: Testbed floor plan with locations of APs (blue), rotating user (yellow) and test trajectory (red)
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(a) Nearby AP (12 m)
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(b) Far away AP (66 m)

Figure 4: Human body shadowing while rotating a human
body in an indoor environment

always to a low RSSI value measured by the back tag (and
the other way around). This is because the human body is
located between both body-worn tags and can e.g. block or
attenuate the strongest path between the APs and mobile tags.
The maximum differences between the chest and back mobile
tag range from 1.8 dB to 25.2 dB with an average value of
14.8 dB (over all forty APs).

C. Solution: compensating for user’s orientation

To mitigate the body shadowing, we will compensate explic-
itly for the influence caused by a user with a certain position
and tag orientation towards the infrastructure APs. It consists
of two parts: an orientation estimator and a compensation
model.

1) Orientation estimation: Due to the nature of most build-
ing structures, people tend to walk in the same direction for at
least a few seconds. This walking behavior can be exploited
to estimate a user’s orientation. More specifically, the angle
between the previous and current location predictions can be
used as an estimation for the next orientation. Such orientation
estimator can be built on top of an existing tracking system
which provides the current and previous positions as input.
The next orientation is predicted as:

Ot+1 =
180

π
arctan

(
Pt,y − P am

t,y

Pt,x − P am
t,x

)
[◦] (3)

P am
t =

1

K

K∑
k=1

Pt−k (4)

Ot+1 [◦] is the next orientation, P am
t is the arithmetic mean

of K previous predicted positions Pt at time step t and the x
and y subscript indicate the x and y coordinate, respectively.
The arctangent function with two arguments (atan2) is used
to obtain the appropriate quadrant of the computed angle. The
performance of this orientation estimator will depend on the
accuracy of the tracking system itself and on the frequency of
turns taken by a user. The robustness and responsiveness of
the estimator are two contradictory demands. Including more
previous location predictions (parameter K from equation 4)
will improve the accuracy of the estimator when few turns
are present but this will rapidly decrease when a trajectory
with more abrupt changes, is followed. The reason for the im-
provement is that the predicted locations are never completely
accurate (e.g., variations around an actually followed straight
line) and taking into account multiple positions can reduce
the effect of prediction inaccuracies (averaging out the error).
A simulation was performed to evaluate our estimator: two
trajectories were outlined on a floor plan. The first trajectory
has a length of 100 m and contains twenty-three 90◦ turns
and two 180◦ turns, which results in an average of one turn
every 4 m (red trajectory in Figure 5). The second one is a
more straight trajectory, it has a length of 56 m and contains
eight 90◦ turns, which results in an average of one turn every
7 m (blue trajectory in Figure 5). The walking speed was set
to 1 m/s.

Figure 5: Red and blue trajectory for testing the orientation
estimator (simulation)

The RSSI values corresponding to the positions along the
trajectory were picked from the fingerprint database from
Section III-A and are used as input for the tracking algorithm.
Gaussian white noise with standard deviations of 1 dB, 3 dB
and 6 dB was added to these RSSI values to simulate more
realistic conditions. In Figure 6 the median values of the



orientation estimation error are plotted as a function of the
number of previous locations taken into account (parameter
K from equation 4). The simulations were repeated five times
for averaging purposes.
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(a) Red trajectory
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(b) Blue trajectory

Figure 6: Accuracy of orientation estimator

As expected, the median value of the error of estimation
will first decrease when more previous positions are taken into
account (averaging out inaccuracies) and will then increase
again (due to turns taken). For the red trajectory (with many
turns), the optimal value for K is 3 with accuracies of 12◦,
22◦ and 32◦ depending on amount of added noise. For the
blue trajectory, this optimal value is 5 with accuracies of
10◦, 15◦ and 22◦ depending on amount of added noise. The
user’s orientation ranges from 0◦ to 360◦, meaning that an
orientation error of 180◦ is the worst possible result and
that an error of 22◦ corresponds to a relative error of 12%.
Because the followed trajectory is not known beforehand,
the default K value should not be set too high. A value
between 3 and 5 is advised, this can still deal with more abrupt
trajectory changes and is sufficiently accurate to compensate
for the user’s orientation (see Section V-A). Alternatively, an
accelerometer, compass or gyroscope can be used to obtain
a more precise orientation at the cost of additional required
hardware.

Once the orientation of a user is known, the angles α
between his mobile tag and the fixed infrastructure APs can be
calculated (see Figure 7). It is assumed that the tag’s position
on the body and a floor plan with the locations of the fixed APs
are known beforehand and that the user is walking forward.

Figure 7: Angle between body-worn tag and AP (top view)

2) Compensation model: The orientation and angles be-
tween a user, his tag and all APs can now completely be
characterized. Next, a compensation model is needed to es-
timate the influence due to the presence of this user. The

mobile tag is calibrated based on the same measurements from
Section III-B: the average value between the measurements
and the RSSI fingerprinting database is taken as offset (cal-
culated once). This means that the measurements will be an
overestimation when tag and receiving node face each other
directly (α = 0) and be an underestimation when the human
body is completely blocking the signal (α = π), see Figure 4.
A continuous model is chosen that uses the cosine of the angle
α between the body-worn tag and an AP (see Figure 7), to
calculate the compensation value:

Ccosine(α) =
compensation

2
· cosα [dB] (5)

For this preliminary work, we have chosen this cosine
model because it resemblances the measured RSSI values
when a user turns around its axis (see Figure 4). Although, the
influence of a user’s body was up to 25 dB in our experiment
from Section III-B, the default value of this compensation
from Equation 5 is set to 6 dB, which was found to be a
good compromise between compensating for worst case body
shadowing and when almost no shadowing is present (the
maximum differences between the chest and back tag varied
from 1.8 dB to 25.2 dB, see Section III-B).

Including the human body shadowing compensation, results
in following cost function for the tracking algorithm:

Costi,T =
∑T

t=1

∑N
n=1

∣∣∣(RSSImeas
t,n − Ccosine(αn)

)
−RSSIreft,n,i

∣∣∣ (6)

Ccosine(αn) is the cosine compensation model and uses
the angle αn between the body-worn tag and AP n as
input arguments. The other symbols are already defined for
Equation 1 in Section III-A.

IV. EXPERIMENT CONFIGURATION

The experiments are conducted on a wireless testbed, lo-
cated on the third floor of an office building in Ghent, covering
over 1500 m2 (17 m by 90 m, see Figure 3). It consists of
several computer classes, offices and meeting rooms. The core
is made of concrete walls, the inner structure is movable and
made of layered drywall and the doors are made of wood. The
wireless network consists of 48 fixed nodes that were installed
at a height of 2.5 m (blue dots in Figure 3). A TelosB mote
from Crossbow is used as body-worn mobile tag [10]. These
are equipped with an embedded PIFA antenna and Chipcon
CC2420 radio operating at 2.4 GHz (IEEE 802.15.4/ZigBee
compliant). There are 31 transmission power levels between
-25 and 0 dBm (set to 0 dBm in all experiments). The mobile
tag broadcasts 10 packets per second which are received by
the infrastructure nodes and every second a location update
is generated (the average RSSI values of the packets received
within this second are used as input for the tracking algorithm).
The test trajectory (indicated in red in Figure 3) has a total
length of 140 m, goes through three meeting rooms, a PC
class and the hallway (remark: there are no APs installed in
the second meeting room). The ground truth, i.e., the correct



locations for comparison, are provided by fragmenting the test
trajectory based on the number of location updates from an
experiment (the user walked as continuously as possible with
an average speed of 1.2 m/s).

V. PERFORMANCE EVALUATION

This section investigates the impact of body shadowing
mitigation on the tracking accuracy. The presented results are
obtained from experiments performed on the testbed described
in Section IV.

A. Impact of body shadowing mitigation

To evaluate the performance when using the orientation
estimator and compensation model, the test trajectory was
repeated 5 times by a human whilst wearing a tag, placed on
the central area of the chest (see Figure 2a). The Viterbi-like
tracking algorithm is used to provide the previous positions
that are needed to estimate the orientation (see Section III-C1).
Three scenarios are considered: no compensation, compen-
sation with the estimated orientation and compensation with
the real orientation. The first scenario uses no compensation.
The second and third scenario compensate for the influence
of a user’s body with the compensation model from Sec-
tion III-C2. The only difference between them is that the
second scenario uses the orientation estimator to determine
the user’s orientation, whereas the third scenario gets the
real orientation as an additional input value. This is possible
because the followed trajectory is known beforehand and it
is assumed a user walks forward, hence the real orientation
can be determined. These three scenarios are plotted for four
different K values: 1, 3, 5 and 7 (this parameter determines the
number of previous locations taken into account to estimate
the next user orientation, see Section III-C1). Thus, this will
only affect the second scenario (compensation with estimated
orientation).
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Figure 8: Impact of body shadowing mitigation

From Figure 8 it is clear that including the user’s orientation
to compensate for human body shadowing will always improve
the tracking accuracy. Usage of our orientation estimator and
compensation model results in additional improvements of

18.9%, 21.1%, 23.6% and 19.6%, for the four K values, re-
spectively. As expected, the optimal K value is around 5 (with
a median accuracy of 2.5 m) but the difference remains rather
limited. The median orientation error for this trajectory and K
value, averaged over the five runs, is 25◦ (which is comparable
to the simulations from Section III-C1). Furthermore, using the
real orientation instead of the developed orientation estimator
does not further improve the accuracy but performs similar.
Normally, this real orientation is provided by a compass or
gyroscope but for now this is accounted for by giving the real
orientation as an additional input. Thus, using a compass or
gyroscope has no added value in this case (body shadowing
mitigation), but in other localization schemes they can be used
as an additional feature to estimate the position itself, like e.g.
dead reckoning, where their usage will be beneficial [11].

VI. CONCLUSIONS

In this paper, a novel technique to mitigate the effects of
body shadowing on a tracking algorithm’s performance, is
presented. By compensating explicitly for the body shadowing
caused by the user that is being tracked, the tracking accuracy
can be improved. This method uses a continuous compensation
model and relies on the orientation of a user’s tag towards
the infrastructure nodes. The user’s orientation is provided
by an orientation estimator developed on top of a tracking
algorithm. This alleviates the need for specialized hardware
like a compass or gyroscope but achieves similar performance.
Mitigating the human body shadowing results in a relative
improvement of 23.6%. Future work will include the investi-
gation of optimal tag placement, usage of multiple body-worn
tags simultaneously and methods to obtain location-dependent
compensation models by making use of environmental and
empirical data.
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