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Introduction

Controlled drug release gained a sharply increasing interest over recent years. Multiple materials have been screened as possible drug carriers, ranging from biodegradable polymers
to hydroxyapatite[1]. Periodic Mesoporous Organosilicas are valuable alternatives as they possess a high chemical and thermal stability combined with a biocompatible nature[2].
Furthermore, their large internal surface area permits a high drug loading. Careful selection of the organic ‘bridged’ functionality allows a controlled release with respect to external
stimuli, such as pH or temperature, of the drugs which are adsorbed via weak and reversible interactions, e.g. H-bonding and hydrophobic-phobic interaction[3]. In this contribution
a novel malonamide (MA-PMO) and a methyl-malonamide PMO (mMA-PMOQO) bearing a high amount of H-bond donors and acceptors is developed and thoroughly characterised.
Subsequently, these hybrid materials are evaluated in the controlled drug release of Ibuprofen.

Synthesis and analysis of (methyl)malonamide-PMOs
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Summary

Two new well-ordered malonamide-type PMOs are developed, showing high porosity and large pore sizes. A malonamide PMO (MA-PMO) is shown promising for controlled drug
release as the high functional loading leads to large Ibuprofen adsorption via H-bonding and hydrophobic interactions. As the functional loading of the drug carrying PMO is
increased, intrinsically more Ibuprofen is adsorbed. Furthermore, high amounts of drug are released in a controlled, linear fashion over a long timespan in a phosphate buffer
solution (pH 7,4) at body temperature. Most interestingly, the rate of drug release is tunable by varying the malonamide functional loading. The influence of H-bonding
interactions, which possibly give rise to a longer retention of Ibuprofen, can be investigated further by experiments with methyl-malonamide PMOs (mMA-PMOQOs). Also, these new

drug carriers may be employed in the controlled release of 5-fluorouracil (5-FU), an anti-cancer agent, or they can even be used as a combined pH-triggered release system of
both IBU and 5-FU [4].
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