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Abstract—The ability to automatically determine the road type
from sensor data is of great significance for automatic annotation
of routes and autonomous navigation of robots and vehicles. In
this paper, we present a novel algorithm for content-based road
type classification from images. The proposed method learns
discriminative features from training data in an unsupervised
manner, thus not requiring domain-specific feature engineering.
This is an advantage over related road surface classification
algorithms which are only able to make a distinction between
pre-specified uniform terrains. In order to evaluate the proposed
approach, we have constructed a challenging road image dataset
of 20,000 samples from real-world road images in the paved
and unpaved road classes. Experimental results on this dataset
show that the proposed algorithm can achieve state-of-the-art
performance in road type classification.

I. INTRODUCTION

The advance of sensor technology, coupled with increas-

ing on-board processing capabilities of current smartphone

devices, has enabled users to efficiently create, capture, and

share information about their activities. At the same time, the

abundance of user-generated sensor information has prompted

the creation of web-based systems which provide different

services from analyses of the aggregated user data. Online

geographic information systems such as OpenStreetMap 1,

RouteYou [1], and Bikemap 2 rely heavily on user-contributed

sensor data to offer location oriented services.

Two common goals of this kind of systems are to provide

querying of locations on interactive maps, and discovery of

routes for recreational GPS-users such as cyclists and hikers.

The latter makes use of pre-created GPS trajectories submitted

by the users, while the former utilizes user annotations of

objects and infrastructure. For route finding, it has been

shown [2] that the road type or terrain characteristics, have

an important influence on route ranking. Therefore, it is not

surprising that people try to annotate the type of the route they

are submitting to allow for an effective search of good routes

for fellow users. As opposed to route recording, annotating the

different parts of a route requires active user involvement, and

1http://www.openstreetmap.org
2http://www.bikemap.net/en/

is both laborious and error prone. In this paper, we propose a

method for automatic content-based road type classification

from images. The proposed method does not require user

intervention and is suitable to operate on image data of road

surfaces. Such images can be obtained from mobile sensors

(e.g., from a smartphone camera setup [3]), for which our

proposed method can be applied directly. Images from online

geographic services like Google Street View in combination

with a road detection method [4], [5], for easy extraction

of road surface sub-images, can also be used. In this work,

however, we focus only on the problem of learning road type

categories from images.

The remainder of this paper is organized as follows. In

Section II, we discuss related work in road and terrain classifi-

cation. Subsequently, Section III contains a description of the

proposed method for road type classification by unsupervised

learning of image features. In order to make a meaningful

comparison, two other algorithms for road type learning are

also discussed. Next, Section IV details the road image dataset

which we use to test the methods given in Section III.

In Section V, we present experimental results. Section VI

concludes the paper.

II. RELATED WORK

Content-based road or terrain classification plays an impor-

tant role in the domain of autonomous robot/vehicle naviga-

tion. Related works [6]–[8] in this domain make use of data

from vibration sensors (on-board accelerometers or inertial

measurement units (IMUs)) to classify the terrain type which

the robot/vehicle is traversing. Visual terrain classification can

be used when on-board accelerometer sensors or IMUs are

not available. In road type classification from visual data,

Popescu et al. [9] classify road surfaces based on texture

features obtained from statistical properties of medium co-

occurrence matrices of road images. Tang and Breckon [10]

use a feature set of color, texture, and edge features from

constrained sub-regions of driver’s perspective images to train

a neural network classifier of road types. For the color features,

they derive histogram distributions and pixel statistics (mean,



standard deviation, and entropy) from selected channels of

different color space representations of the images. The texture

features are based on gray-level co-occurrence matrix statistics

and Gabor filters, while the edge features are based on Hough

line fitting and contour tracking of the Canny edge output

of an image. Khan et al. [11] calculate SURF features, over

intersections of a regular grid, from terrain images captured

by a mobile robot. The extracted features are used to train

a Random Forest classifier to discriminate between terrain

surfaces.

Unlike our proposed method, all of the previous visual

content-based terrain classification approaches [9]–[11] make

use of engineered color and/or texture features. In [9] and [11],

the images used give a close-up view of uniform terrain

surfaces. The approach in [10] is not suitable when only

a limited area of the terrain surface is available (as in the

case of robot navigation). By contrast, our road image dataset

contains road surface images taken from real-world Google

Street View photos, which contain artifacts such as motion

blur, illumination changes, and overexposed areas.

III. FEATURE EXTRACTION AND CLASSIFICATION OF

ROAD IMAGES

In this section, we describe three algorithms for content-

based road type classification: our proposed algorithm for

learning road image features from unlabeled samples, an

algorithm which uses specifically engineered features for dis-

crimination of road types, and a baseline method.

A. Unsupervised Learning of Road Image Features

Our proposed approach similarly to other convolutional

learning methods, such as the one of Lee et al. [12], learns

features from unlabeled images. In particular, we implement

a single-layer processing pipeline as the one described by

Coates et al. [13]. The processing pipeline consists of two

stages: unsupervised feature learning, and feature extraction

and classification.

1) Unsupervised Feature Learning: In the first stage, ran-

dom patches of size r × r pixels are extracted from the

unlabeled road images, where r is the receptive field size.

Each of the extracted patches is reshaped as a vector of pixel

values in R
M ,M = r2 · c, where c is the number of image

channels. Normally, the input images are represented in three-

channel RGB color space. However, due to the characteristics

of the employed feature learning algorithm, and based on our

empirical observations, we introduce a conversion of the input

images from RGB to CIELAB [14] color space assuming

neutral day illuminant (D65). The transform to a perceptually

more uniform color space, such as CIELAB, enables more

accurate distance calculations in algorithms for learning fea-

ture mappings from color images. In this way, we construct a

dataset X = {x(1), . . . , x(m)} of randomly sampled patches.

Each of the vectors x(j) ∈ R
M is locally normalized to zero

mean and unit variance. Also, the entire dataset of random

patches X is whitened [15]. The pre-processed dataset is then

used for unsupervised learning of road image features.

K-means learning: The goal of the unsupervised learning

algorithm is to learn a feature mapping function g : RM →
R

K from the dataset X , so that an input vector x can be

mapped to a new feature vector g(x). Experimental results [13]

1: procedure KMEANS(k, b, t, X)

2: Input: k, mini-batch size b, iterations t, dataset X

3: Return: centroids C

4: Initialize each c ∈ C with k−means++ initialization

5: v ← 0 ⊲ Per-centroid counts

6: for i← 1, t do

7: M ← b examples picked randomly from X

8: m← 0 ⊲ Batch centers

9: u← 0 ⊲ Batch per-center counts

10: for all x ∈M do

11: d← f(C, x) ⊲ Cache centroid nearest to x

12: D ← D ∪ d

13: u[d]← u[d] + 1

14: m[d]← m[d] + x

15: end for

16: for all c ∈ D do

17: µ← m[c]

u[c]
⊲ Mean sample

18: v[c]← v[c] + u[c] ⊲ Update counts

19: η ← 1

v[c]
⊲ Learning rate

20: c← (1− η)c+ ηµ ⊲ Take gradient step

21: end for

22: end for

23: return C ⊲ Return the centroids

24: end procedure

Fig. 1. K-means algorithm with mini-batch stochastic gradient descent cost
minimization.

have demonstrated that an over-complete dictionary for feature

mapping can be learned effectively with fast unsupervised

learning algorithms such as k-means learning. Here, we im-

plement a modified version of an efficient stochastic gradient

descent k-means algorithm proposed by Sculley [16]. Because

the k-means algorithm is only guaranteed to converge to a

local optimum of its cost function, the resultant clustering is

dependent on the manner of initialization. Therefore, we use

an initialization procedure developed by Arthur and Vassilvit-

skii [17], where each of the k centroids are chosen one at a

time, at random, from the dataset with probability proportional

to the distance from the centroids already chosen (see [17] for

more details).

In order to make the algorithm more adaptable for paral-

lelization, the gradient update is performed with a larger step.

That is, instead of performing the gradient update step on each

of the random samples in the batch, we calculate an update

step once for each of the unique centroids to which the samples

in the batch are closest to. The modified algorithm is given in

Figure 1.



Fig. 2. Illustration of feature extraction from an input image. First patches of size r × r are sampled from the image. Each of the patches are sampled s

pixels apart. Then, the reshaped and pre-processed vector representing each patch is mapped to a new K dimensional vector (depicted as filled circles) by
using the learned dictionary. Finally, the encoded vectors are pooled over a two-dimensional grid and concatenated to form the final feature vector of the
input image.

2) Feature Extraction and Classification: Once the dictio-

nary C of basis functions c(k) has been learned from the

unlabeled training set, it is used to map novel input samples to

features. The mapping is done by using an encoding transform.

We employ one of the sparse non-linear encodings given by

Coates et al. [13], [18], which performs a soft assignment for

each feature k of the feature vector g(x):

gk(x) = max(0,mean(z)− zk), (1)

where zk =
∥

∥x− c(k)
∥

∥

2
. The function in Equation 1 produces

non-zero values only for the features k where the distance of x
to c(k) is below the average of the distances of x to c, ∀c ∈ C.

The learned feature mapping function g : RM → R
K allows

for feature extraction from a single r × r patch. To extract

features from a road surface image, we apply the feature

extraction over the entire input image. The sampling of the

input is convolutional (as shown in Figure 2), but it can also be

performed with a step-size s between two consecutive patches.

Each of the extracted patches is represented by a vector in

R
K after encoding. Grid regions in the R

K feature space are

averaged to reduce the dimensionality of the feature represen-

tation of the input image, and to improve the robustness of the

averaged feature vector to small spatial changes in the image.

The averaged, or pooled, vectors are then concatenated into

the final feature vector.

For each of the labeled images in the training set, we

apply the previously described feature extraction process. The

resultant feature vectors and training labels are then used

for classification. Because of the large amount of features

obtained through unsupervised feature learning, we can make

use of a linear classification algorithm. A linear L2 Support

Vector Machine (SVM) [19] compared favorably to other

classification methods. Hence, we trained a linear L2 SVM

for classification using cross-validation to determine the reg-

ularization parameter of the linear model.

B. Domain Engineered Features

For this method, we use a set of visual features similar

to the one that has been used in previous work [3], which

has achieved state-of-the-art results in terrain classification.

Each of the features, described hereafter, are designed to

discriminate a certain type or types of road surfaces. We use

in total nine features, as follows:

• Color: four features quantifying the percentage of blue,

green, white, and low saturated orange/red pixels in

the road image. The features, respectively, give high

output for cobblestones and asphalt, grass, asphalt road

markings, and dirt roads and gravel.

• Gray: percentage of pixels that satisfy the RGB color

equality R ≈ G ≈ B. This feature has higher value for

asphalt and cobblestones than for unpaved roads.

• Energy: the Fourier transform energy spread of the road

image. The energy is large for road surfaces which

contain a lot of edges (such as cobblestones).

• Hough: number of distinct edge directions in the Hough

transform of the road image. Road surfaces with struc-

tured texture (such as tiles) result in high number of

edges.

• EOH: MPEG-7 Edge Orientation Histogram spread of

edges [20]. EOH has large values for road surfaces with

random edge distribution (such as gravel).

• GLCM: product of gray-level co-occurrence matrix

statistics of local binary pattern filtered road image [21],

[22]. High feature values for cobblestones and some

unpaved road surfaces.

Using the features described above, we extract feature vectors

from the set of training images. As in [3], a Random Forest

classifier [23] is used for the classification task.

C. Baseline Method

Our third method is a simple baseline for road type clas-

sification to which we compare results obtained from the

applied learning algorithms. That is, for each road image in



the training set, we extract a patch of size r × r from the

center of the image. Then, the pixels of each color plane of

the patch are concatenated to form a feature vector. Extracted

feature vectors, together with the corresponding labels, are fed

to a linear SVM classifier. The same classification method was

used as the one in Section III-A. The proposed baseline makes

use only of the color information of the road images. Because

very simple content-based features are used, it also provides

an insight into the separability of the samples in the dataset.

IV. ROAD IMAGE DATASET

For the purpose of testing the different road type clas-

sification methods, we have built a dataset of small road

surface images (see Figure 10a, and Figure 10b). The dataset

is constructed using the geographical information from trajec-

tories traversed by recreational cyclists in combination with

the Google Street View web service.

In order to sample different road surfaces, we extract geo

coordinates (latitude, and longitude) from points along a GPS

trajectory. Duplicate trajectory points are removed and are

not considered for further processing. To prevent redundant

samples of road images in the final dataset, the trajectory

points are filtered so that each point is at least 50 meters

apart from the previous point. The distance between trajectory

points, given their respective latitudes ϕ and longitudes λ,

is calculated using the Haversine equation for the shortest

distance d between two points over the Earth’s surface:

a = sin (∆ϕ/2)
2
+ cos (ϕ1) cos (ϕ2) sin (∆λ/2)

2

d = 2R arcsin
(√

a
)

, (2)

where R denotes the radius of the Earth. Once we obtain the

(a) (b)

Fig. 3. Google Street View images from the paved (Figure 3a) and unpaved
(Figure 3b) road classes.

filtered subset of geo coordinates from a given trajectory, we

use the Google Street View API 3 to query images from the

selected locations.

One issue of the proposed approach for road image querying

is how to obtain a good view of the road surface. The Google

Street View web service allows for optional parameters in

the image query, such as pitch, which specifies the angle of

the camera (up or down) relative to the Street View vehicle.

A pitch of -90 degrees gives a camera view perpendicular

3https://developers.google.com/maps/documentation/streetview/

Fig. 4. Zoomed out Google Street View image perpendicular to the road
surface (camera pitch −90

◦). The image contains blurred areas (under the
vehicle) where the image content was interpolated.

to the road surface. However, with the camera in a straight

down position, the quality of the image obtained is limited

(see Figure 4). The reason is due to the way the camera is

mounted on the Street View vehicle, i.e. the image from the

road perpendicular camera view has to be interpolated from

images taken from different angles of the camera relative to the

vehicle. We use instead a different approach to obtain images

with a clear view of the road, such as the images in Figure 3.

Keeping the pitch to 0◦, we calculate for each position the

compass heading θ of the camera with regard to the next

position on the trajectory (as shown in Figure 5). The heading

is calculated from the latitudes ϕ and longitudes λ of the two

coordinate points:

a = sin (∆λ) cos (ϕ2)

b = cos (ϕ1) sin (ϕ2)− sin (ϕ1) cos (ϕ2) cos (∆λ)

θ = arctan
(a

b

)

. (3)

The images obtained in this way are suitable for content-based

analysis of road surfaces.

Fig. 5. Illustration of camera view placement along a trajectory based on
compass heading (forward azimuth) calculation between points. The road is
in the center of the acquired images. This is not the case (depicted by the red
arrow) only in a small number of the acquired Google Street View images,
where there is a sharp turn in trajectory direction.

We manually extract 32× 32 sub-images from the acquired

road images to build our dataset (see Figure 6). Because only

images from roads traversable by a motor vehicle can be



obtained, we create 2 classes of road types: paved roads, and

unpaved roads. There are in total 20,000 road images in the

dataset, where the two classes are proportionally represented

by half of the samples. Each of the two classes are compre-

hensive, i.e. they include samples from different subclasses of

road types within the super class. For example, the paved roads

class contains sample images from asphalt roads, but also other

images of road surfaces with different texture and color, such

as cobble stones, tiles, bicycle lanes, pedestrian crossings etc.

In the unpaved roads class there are sample images of different

dirt and gravel roads. By not dividing the dataset samples into

further subclasses, we obtain a more challenging set which can

be used to evaluate the inference capabilities of the proposed

unsupervised learning method to the two higher level road

categories.

Fig. 6. Extraction of sub-images from the road surface. We extract 32× 32

pixel sub-images of different road surfaces to form the road image dataset.

V. EXPERIMENTAL RESULTS

For our experiments, we used the road image dataset

presented above. The dataset was partitioned into a training

set of 16,000 images (8,000 images per class), and a test

set of 4,000 images (2,000 images for each class). For each
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Fig. 7. Effect of number of features on test classification accuracy.

of the compared methods, we used 5-fold cross validation to

optimize the model parameters. The optimal cross validation

parameters were then used to train the model on the whole

training set. Finally, the learned model was tested on the

held out test set. For the unsupervised road image feature

learning algorithm, we tested different values for the number

of features, the step size s, and the receptive field r. Because

the computational costs prohibit a full grid search over all

parameters, we varied one parameter while keeping the rest

fixed. Afterwards, we used the parameter values that achieved

the optimal performance for the final test set results (given in

Table I).

For the unsupervised feature learning algorithm, when vary-

ing the number of features used, better results were obtained

when using a higher number of features (see Figure 7). As it

can be seen in Figure 8, convolutional sampling of the input

image with a step size s = 1 produced significantly better

results than non-overlapping sampling. For the receptive field,

smaller receptive field sizes gave better results (see Figure 9).

From the experiments, it can be inferred that, except for
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Fig. 8. Effect of step size on test classification accuracy.
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Fig. 9. Effect of receptive field size on test classification accuracy.

the step size parameter, the method is not very sensitive to

parameter tuning.

TABLE I
TEST CLASSIFICATION ACCURACY ON THE ROAD IMAGE DATASET.

Algorithm Test Set Accuracy

Baseline 74.23%

Engineered Features 84.25%

Unsupervised Features 85.30%



(a) (b) (c) (d)

Fig. 10. Samples of road surface images from the paved (Figure 10a) and unpaved (Figure 10b) road classes. Within a class, there are samples with very
different color and texture characteristics (compare surfaces from asphalt roads and the red bicycle lanes in Figure 10a). There are also very similar samples
between classes (see patch on third row, second column from Figure 10a, and patch on second row, first column from Figure 10b). Some unpaved road
samples misclassified as paved road (Figure 10c). Paved road samples incorrectly assigned to the unpaved road class (Figure 10d).

VI. CONCLUSION

In this paper, we have proposed a novel content-based

method for road type classification by unsupervised learning of

image features. We conducted experiments on a road image

dataset of 20,000 samples partitioned into 2 comprehensive

road classes. The experimental results show that the proposed

approach is on par with a state-of-the-art method for road

surface classification which makes use of domain engineered

features. However, unlike other road surface classification al-

gorithms, it can successfully learn discriminative features from

unlabeled data. Therefore, the presented method is suitable

for use in content-adaptive computer vision systems, such

as systems for robot/vehicle navigation, and in systems for

automatic route annotation.
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