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Abstract — In this contribution a novel method is discussed that
is of practical use for analyzing the electromagnetic compatibility
behavior of electronic systems. The aim is to develop an efficient
technique that mimics radiated immunity and emission tests in
the presence of multiple non-collocated noise sources in simula-
tion. The proposed method is simple in that it only relies on the
simulated (or measured) radiation pattern of the devices in the
system while allowing arbitrary positions. Rotation of the devices
is performed by a spherical harmonics decomposition of the radi-
ation patterns together with the application of Wigner-D rotation
matrices. The adopted assumption is that the devices are spaced
sufficiently far from each other such that there is no coupling
via the reactive near-field. The proposed procedure shows good
agreement with measurements and full-wave simulations while at
the same time it has a low computational cost.

1 Introduction

Examining the Electromagnetic Compatibility (EMC)
behavior of devices in an electronic system is of great
importance in today’s electronic equipment, not only
to pass regulatory and legislative laws concerning the
radiated emission and immunity relative to other elec-
tronic devices, but also to ensure proper operation of
different components internally in such a system. Com-
pliance tests that characterize these properties of a de-
vice are performed in an anechoic chamber. In such a
test, the device under test is rotated over different an-
gles, while a measurement is performed for every angu-
lar position. The disadvantage of this method is that it
is costly and time-consuming. Furthermore it can only
be performed after devices are already prototyped. It
would be benificial to take radiated emission and immu-
nity into account during the design phase (or precom-
pliance phase). This is usually done using simulations,
but requires large computational resources and seperate
simulations for every angular position.

In this contribution, we develop a formalism that
efficiently models the interaction of multiple non-
collocated noise sources on another device, based on
work performed in [1]. The different devices in the sys-
tem are allowed to interact via each other’s radiative
near field. The proposed formalism only relies on the
radiation patterns of the devices present in the system
and their mutual positions and orientations.
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2 Formalism

Consider the general problem geometry of the case
with multiple non-collocated sources (N ) and one re-
ceiving device in Fig. 1. The devices are represented
by their current density sources j1TX(r′), · · · , jNTX(r′) for
the transmitters and jRX(r′) for the receiver. They are
defined in volumes V 1

TX, ..., V
N

TX and VRX, respectively,
with their appropriate phase centers O1

TX, ...,ONTX and
ORX. The electric field generated by the transmitters is
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Figure 1: General configuration of interacting devices.

given by the Electric Field Integral Equation (EFIE):

e(r) = −jωµ
∫
V

G(r, r′) · j(r′) dr′, (1)

where j(r′) represents the current densities
j1TX(r′), · · · , jNTX(r′) on the transmitters and jRX(r′) on
the receiver. µ is the permeability of the background
media, and G(r, r′) the three-dimensional dyadic
Green’s function. The integration domain V extends
over all devices, i.e. V = (V 1

TX ∪ · · · ∪ V NTX ) ∪ VRX.
In this paper we assume that the devices are spaced
sufficiently far from each other, such that there is no
coupling via the reactive near-field.

For such devices, positioned in each other’s Fresnel
or Fraunhofer region, the field incident on the receiving
device can be accurately approximated by restricting V
to VTX =

⋃N
i=1 V

i
TX in (1). By applying Gegenbauer’s

addition theorem [2] to the scalar 3-D Green’s function
and employing a plane wave expansion, the incoming
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electric field can be written in terms of incoming plane
waves and outgoing plane waves:

einc(r) = − ωµk

(4π)2

N∑
i=1

∫∫
Ω

e−jk·(r−rRX)T (riTX,RX, k̂)

∗
[
I − k̂k̂

]
·
∫
V i

TX

ejk·(r
′−riTX)j(r′) dr′ dk̂, (2)

where we defined riTX,RX = rRX − riTX. Also, we inte-
grate over the Ewald sphere Ω and k = k(sin θ cosφx̂+
sin θ sinφŷ+cos θẑ) is the wave vector in spherical co-
ordinates, with k = ω

√
εµ the wavenumber of the back-

ground medium and ε its permittivity. Furthermore,
I is the unit dyadic and T (riTX,RX, k̂) =

∑∞
l=0(2l +

1)j−lh
(2)
l (k|riTX,RX|)Pl(k̂ · r̂iTX,RX) the translation opera-

tor where h(2)
l (·) is the l-th order spherical Hankel func-

tion of the second kind and Pl(·) the Legendre polyno-
mial of degree l. The radiation pattern of any transmit-
ting antenna i is defined as

FiTX(k̂) =
jωµ

4π
k̂×

[
k̂×

∫
V i

TX

ejk·(r
′−riTX)j(r′) dr′

]
, (3)

and similarly for the radiation pattern of the receiver.
Using these, the incident electric field (2) can be writ-

ten in terms of the radiation patterns of the devices in
the system. Assume now, for simplicity, that the trans-
mitters and receiver are one-port devices. Then, an
equivalent circuit representation of this configuration is
as shown in Fig. 2, where ZiTX and ZRX are the radia-
tion impedances of transmitter i and the receiver respec-
tively. Transmitter i is driven by means of a Thévenin
generator composed of a sinusoidal voltage source V ig
with internal impedance Zig . The Norton equivalent
of the receiver consists of a load impedance ZL and a
short-circuit current Isc. Using the modified expression
for the incoming electric field, we obtain a simplified
expression for the short-circuit current induced on the
receiver by multiple transmitters [3]:

Isc=− 1

Z

∫∫
Ω

N∑
i=1

T (riTX,RX, k̂)
FiTX(k̂)

V i0
·FRX(−k̂) dk̂,

(4)

where Z =
√

µ
ε is the wave impedance of the back-

ground medium and V i0 the pertinent normalization fac-
tor, evolving from the reciprocity theorem, depending
on the normalized radiation pattern when operating an-
tenna i is in transmit mode. As the antennas radiation
patterns scale with V i0 , this parameter can be chosen to
be 1 V.

In practice, (4) can only be approximated since the
infinite sum that occurs in the translation operator has
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Figure 2: Equivalent circuit of the interaction between
devices when there are multiple transmitters.

to be truncated to a finite number of multipoles L. How
to select this number, and what accuracy it entails is
explained in [2].

In summary we can say that in order to calculate the
influence of transmitting (noisy) devices on a receiving
(susceptible) device, only the measured or simulated ra-
diation patterns of the devices are needed. Furthermore,
these devices may be positioned anywhere in space,
as long as there is no coupling via the reactive near-
field. This leads to very efficient calculations for mul-
tiple transmitter scenarios, in comparison to full-wave
solutions, especially when one or more of the devices is
repeatedly repositioned in space.

We will now expand the above method into a formal-
ism that is of practical use for the analysis of the EMC
behavior of devices and systems. To mimic compliance
tests for the assessment of radiated emission or immu-
nity in anechoic chambers, we need the ability to effi-
ciently rotate the devices about their phase center. This
can be done by applying the appropriate rotation R to
the radiation patterns of the devices. The rotation is ef-
ficiently performed in the spherical harmonics domain
(RSH), as shown in Fig 3. The transformation to the
spherical harmonics domain F and its inverse F−1 are

F(θ, φ) (Apq, Bpq)

FR(θ, φ) (ARpq, B
R
pq)

F

RSHR

F−1

Figure 3: Rotation of F(θ, φ) to FR(θ, φ) using the
spherical harmonics domain.



given by (5) and (6), respectively:

{
Apq
Bpq

}
=

−1

p(p+ 1)

2π∫
0

π∫
0

[
q

{
jFφ(θ, φ)
−Fθ(θ, φ)

}
Y ∗pq(θ, φ)

+ sin θ

{
−Fθ(θ, φ)
jFφ(θ, φ)

}
dY ∗pq(θ, φ)

dθ

]
dθdφ, (5)

{
Fθ(θ, φ)
Fφ(θ, φ)

}
=

P∑
p=0

∑
|q|≤p

[{
Apq
jBpq

}
dYpq(θ, φ)

dθ

+

{
Bpq
jApq

}
qYpq(θ, φ)

sin θ

]
. (6)

Here, Ypq(θ, φ) are the orthonormalized scalar spheri-
cal harmonics and P is a parameter that determines the
accuracy. In Fig. 3, the transformationR represents the
desired rotation in the spatial domain. The rotation it-
self is performed in the spherical harmonics domain by
the transformation RSH that makes use of Wigner D-
matrices. The rotated coefficients of the spherical har-
monics expansion are calculated as{

ARpq
BRpq

}
=

{
Apq
Bpq

} ∑
|r|≤p

e−jqγdrpq(β)e−jrα, (7)

with drpq(β) the Wigner small d-matrix, given by

drpq(β) = (−1)r−q
√

(p+ r)!(p− r)!(p+ q)!(p− q)!

·
∑
s

(−1)s
(
cos β2

)2(p−s)+q−r(
sin β

2

)2s−q+r
(p+ q− s)!s!(r− q+ s)!(p− r− s)!

. (8)

Here, the range of s is determined by the condi-
tion that all factorials are nonnegative, thus s ∈
[max (0, q − r),min (p+ q, p− r)]. In (7)-(8), α, β
and γ are the standard Euler angles that define the rota-
tion using the z − y − z convention in a right-handed
frame. The Euler angles (α, β, γ) are readily related to
the desired inclination and azimuthal angles θ and φ, by
choosing α = φ, β = θ and γ = 0.

3 Validation Example

In order to validate the formalism, a numerical exper-
iment is performed with half-wavelength dipole anten-
nas. In this example, as shown in Fig. 4, two transmit-
ters are placed at positions r1

TX = λx̂ and r2
TX = −λx̂

while the receiver is located at rRX = λŷ. The short-
circuit current Isc obtained with our method as shown
in (4) is compared to the Method of Moments (MoM)
reference solution for arbitrary thin wires [4]. The
wire thickness used in this example equals 10−4λ and
the MoM simulation uses five segments to model one
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λ
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Figure 4: Configuration of the validation example with
two transmitters and one receiver.

dipole. The example in Fig. 4 is comparable to the
equivalent circuit shown in Fig. 2 with N = 2 and
Z1
g = Z2

g = ZL = 0 Ω. The excitation voltages
between the terminals of the transmitters are chosen
V 1
g = V 2

g = 1 V. In the MoM simulation, the short-
circuit current is calculated directly by inverting the full
MoM matrix equation.

To verify our novel method, with rotations performed
using spherical harmonics, we start from the dipole’s
radiation pattern F(θ, φ). This radiation pattern is ob-
tained via a MoM simulation for a single dipole. This
radiation pattern is decomposed into spherical harmon-
ics by (5) and afterwards rotated using (7). Subse-
quently, the rotated radiation patterns FR(θ, φ) are re-
constructed using (6) and finally substituted into (4)
to calculate the short-circuit current Isc. For this ex-
ample we rotate the recieving dipole over Euler an-
gles α = β = γ, varying from 0 till 2π for which
we use P = L = 2. A comparison between the
short-circuit current obtained from the MoM simulation
and the novel spherical harmonics method is given in
Fig. 5, where an excellent agreement is observed. The

α = β = γ

|I
|[
d
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A
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Figure 5: Amplitude of the short-circuit current at the
port of the receiving dipole. The receiving dipole is ro-
tated over Euler angles α = β = γ.



MoM simulation over all angles took 84.73 s whereas
the novel method only took 1.63 s. Hence, an impres-
sive speed-up factor of about 50× is achieved. In ad-
dition to the much shorter simulation times, only the
(P + 1)2 coefficients Apq and Bpq have to be stored
to simulate any situation with relative position and ori-
entation. All simulations have been carried out on an
Intel R©CoreTM i7-2600 processor running at 3.40 GHz
and with 16 GB of memory.

4 Application Example

To demonstrate the practicability of the developed for-
malism, a measurement has been performed in an ane-
choic chamber. In this example, a Standard Gain
Horn (SGH) acts as the receiver, while two microstrip
patch antennas act as two non-collocated noise sources.
The measurement setup is shown in Fig. 6. The two
microstrip patch antennas are placed symmetrically
around the SGH, and are rotated about 68◦ towards the
SGH. The distance between the two phase centers of
the patch antennas is dpatch−patch = 2.55 m, while the
distance between the phase center of a patch antenna
and the phase center of the SGH equals dpatch−SGH =
3.45 m. During the measurement, the polarisation of

3.45 m

3.45 m

2.55 m

Figure 6: Measurement setup where a SGH is influ-
enced by two patch antennas acting as non-collocated
noise sources.

the transmitter is altered by rotating the SGH around
the axis of its main beam from −π to π. For every ori-
entation, the scattering parameters between the anten-
nas are measured for comparison with simulation. The
SGH and patch antennas are all designed to radiate at
1.5 GHz. In simulation, the rotation is performed us-
ing spherical harmonics and Wigner-D rotation matri-
ces. The radiation patterns of the SGH and patch an-
tennas are obtained from an analytical solution and a
simulation with the 3-D planar full wave solver Momen-
tum from Advanced Design System (ADS) of Keysight
Technologies, respectively. The obtained link between
one of the patch antennas and the SGH is shown in
Fig. 7, where P = L = 5. An excellent agreement
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Figure 7: The measured and simulated (P = L = 5)
link between one of the noise sources and the SGH. The
SGH is rotated over −π ≤ φ ≤ π.

between measurement and simulation is obtained. For
φ = 0 the difference between measurement and simula-
tion is even smaller than 1 dB.

5 Conclusions

In this contribution we have presented a method that al-
lows to determine the electromagnetic interference in-
duced on a device in the presence of multiple non-
collocated noise sources. The method solely relies on
a single measurement or simulation of the radiation pat-
terns of the devices in the system. Afterwards, the de-
vices can, as long as there is no coupling via the reactive
near-field, be positioned anywhere in space and given an
arbitrary orientation without requiring completely new
simulations, reducing the computational complexity of
our method as compared to a full-wave solver.
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