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Beyond the mediation formula: in search of flexibility and parsimony Natural effect models

Mediation analysis is routinely adopted in a wide range of applied disciplines as a statistical tool Alternatively, natural effect models focus on direct

to disentangle the causal pathways by which an exposure X affects an outcome Y. parameterization of the natural direct and indirect
Within the counterfactual framework, the mediation formula, can be considered the predominant ~ €ffects of interest (Lange, Vansteelandt & Bekaert,
vehicle for effect decomposition. 2012; Vansteelandt, Bekaert & Lange, 2012).

Fitting natural effect models entails the use of well-
working models established missing data methods.

logitP{Y = 1|X,M,C} = mediation formula

9()—'—91X_|_92M—|— 93XM—|— 94C \ E(Y‘X:.XO,M:m,C)
/ XdF (M =m|X = x,C)

natural effect model
logitP{Y (xo,M(x;)) = 1|C} =

EM|X,C)=1n+nX+nrC Bo + Bixo + Boxi + B3xoxi + PaC

natural direct effect odds ratio

= Despite widespread application, the mediation formula often produces complex expressions for odds{Y (1,M(x,))|C}
natural direct and indirect effects. - ’ = exp(P1 + B3x1)
. . L . . odds{Y (0,M(x,))|C}
= For instance, even if no modification by X and/or covariate C levels are allowed for in the
working models (for the outcome Y and mediator M), the resulting expressions may still o _
depend on X and/or C in a complicated way. natural indirect effect odds ratio
» This makes results difficult to report and hypotheses infeasible (or even impossible) fo test and odds{Y (xo,M(1))|C}
may hen n impediment to routine application of the mediation formula. « = exp (B2 + P3xo)
ay hence pose a pediment to routine application of the mediation formula odds{Y (xo, M(0))|C}
Fitting natural effect models and making statistical inferences using R package medflex' in three simple steps
- 2 - 3,4
1 Create a hypothetical dataset by WEIGHTING-BASED APPROACH IMPUTATION-BASED APPROACH
expanding the original data along fit a model for the mediator distribution and or fit a model for the outcome mean and
ungbserved (%, x;) combinations calculate regression weights impute unobserved Y (x,,M (x,)) with
and ... A
P(Ml‘ X,-:xl,Ci) A A
w; = p;(x; (x0) = = . Y;(x0,M;) = E(Y|X; = xo,M;,C;).
l pl( )/pl( ) P(Ml’ Xi:X(),Ci) z( 0 l) ( l‘ l 0 l l)
LA *0 Y Yo M) in a single R command: in a single R command:
1 ] 1 1 Y,
................................... 109 expData <- neWeight(MeX+C, expData <- neImpute(Y~X*M+C,
' family=gaussian, data=data) family=binomial, data=data)
0 1 ?
0 0 ? ] X Xg 7 Yi(x,,M(x,)) w, I X Xg o0 Y.(x,,M(x,))
2 0 0 0 Y, ] 1 ] 1 Y, ] 1 1 1 1 Y,
20 0 1 . O .ho ip@pmot Y oM, .
2 0 1 0 ? 2 0 0 0 Y, ] 2 0 0 0 Y,
20 1 1 ? 20 0 1 Y, i py(1)ipy0) 20 1 0 ?,(1,M,)
| 2 Fit a natural effect model
What’s in it for practitioners? oure direct effect e to the expanded data:
_ _ total direct effect 0.5578 .
v handles a larger class of parametric working models than pure indirect effect  0.1824 ] {1tb<- neMtl)delCY~X®*Xl+C, )
At i : total indirect effect 0.2613 amily=binomial, expData=expData
software applications that rely on closed-form expressions otal effect 0 7403 |
v"  embedded within framework of existing model-fitting
functions in R (mainly glm), allowing estimation on most ,
natural (mostly multiplicative) effect scale (e.g. odds ratios) pure direct effect 7 | ‘
total direct effect 4 . :
v’ simplifies testing, especially when dealing with continuous N 3 !
exposures or covariates, as hypotheses of interest can be P e e 1 i T Utility functions for
captured by (a linear combination of) targeted model § effect decomposition,
arameters total effect — .
P | | I B R heEffdecomp(fit)
v’ provides robust standard errors (for glm working models): 00 04 08
less computer-intensive than bootstrap or Monte Carlo or general linear hypotheses
mtegratlon Many thanks to Patrick Corrigan for granting neLht(fit)
permission to reproduce his cartoon
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