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Abstract
Speaker diarization includes two steps: speaker segmentation
and speaker clustering. Speaker segmentation searches for
speaker boundaries, whereas speaker clustering aims at group-
ing speech segments of the same speaker. In this work, the
segmentation is improved by replacing the Bayesian Informa-
tion Criterion (BIC) with a new iVector-based approach. Un-
like BIC-based methods which trigger on any acoustic dis-
similarities, the proposed method suppresses phonetic varia-
tions and accentuates speaker differences. More specifically
our method generates boundaries based on the distance between
two speaker factor vectors that are extracted on a frame-by-
frame basis. The extraction relies on an eigenvoice matrix so
that large differences between speaker factor vectors indicate
a different speaker. A Mahalanobis-based distance measure, in
which the covariance matrix compensates for the remaining and
detrimental phonetic variability, is shown to generate accurate
boundaries. The detected segments are clustered by a state-of-
the-art iVector Probabilistic Linear Discriminant Analysis sys-
tem. Experiments on the COST278 multilingual broadcast news
database show relative reductions of 50% in boundary detection
errors. The speaker error rate is reduced by 8% relative.
Index Terms: speaker change detection, speaker diarization,
clustering, segmentation, factor analysis

1. Introduction
Speaker diarization systems deal with the “who-spoke-when?”
problem. The objective is to assign a speaker label to every
speech segment (sentence). Speaker diarization encompasses
both speaker segmentation and speaker clustering. The seg-
mentation stage splits the audio stream into homogenous seg-
ments, whereas the clustering stage groups the generated seg-
ments into clusters. Each cluster corresponds with a particular
speaker. In this paper we focus on improving the segmentation
stage because inaccurate and inserted segment boundaries can
have a detrimental effect on clustering: short segments do not
provide enough data to estimate reliable speaker models while
non-homogeneous segments make clustering harder. Further-
more, prior speaker information may be available e.g. in the
form of television show scripts and hence more advanced seg-
mentation techniques that can exploit this extra information are
called for.

During the initial speaker change detection we replace the
popular Bayesian Information Criterion (BIC) [1] by our pro-
posed algorithm which triggers on real speaker differences by
suppressing phonetic variability. The new method, which is de-
scribed in Section 4, extracts a fixed number of speaker factors
for each frame using a sliding window approach. The speaker
factors are extracted using a speaker variability matrix, compa-
rable to the iVector paradigm [2]. At speaker boundaries we

expect the speaker factors to change. A Mahalanobis-based dis-
tance measure is used to detect these changes. The distance
measure is designed to compensate for undesirable speaker fac-
tor changes caused by varying phonetic content.

The actual clustering of the segments is performed by the
two-step Agglomerative Hierarchical Clustering (AHC) system
proposed in [3]. In this approach an initial BIC clustering stage
is followed by iVector Probabilistic Linear Discriminant Analy-
sis (PLDA) clustering [3]. The proposed systems are evaluated
on the COST278 multilingual broadcast news data set [4]. We
evaluate the boundary accuracy before and after clustering. We
also study the general diarization performance by looking at the
speaker error rate.

2. BIC-based speaker segmentation
In this work we focus on the speaker segmentation performance
and we therefore start from oracle speech/non-speech marks.
Non-speech segments longer than 1s are discarded and all con-
tinuous speech segments are analyzed separately. Every 10ms
we extract 16 MFCCs and a normalized log-energy [5]. A two-
stage speaker segmentation algorithm is used to detect the ho-
mogeneous speaker turns as proposed in [6].

2.1. Boundary generation

Candidate change points are generated at places of maximum
difference between the statistical distribution of the acoustic
vectors in two windows (Nw frames) to the left and right of the
candidate boundary position. The distance measure is defined
as the log-likelihood ratio:

DLLR(t) = 2 log |ΣL+R| − log |ΣL| − log |ΣR| (1)

with each Σ the Maximum Likelihood (ML) full covariance of
the acoustic features in the left (L), right (R) and merged (L+R)
window.

To avoid detection of spurious peaks we average the LLR
values across a window of Navg frames. For each speech seg-
ment S the Np(S) largest peaks are selected, with Np propor-
tional to the number of frames Nf (S) in S:

Np(S) = max(Np,min,
⌈Nf (S)

r

⌉
) (2)

Np,min is the minimum number of peaks to detect and r is the
presumed minimum duration of the speaker turns when all turns
would be of equal length. We also enforce a real and shorter
minimum duration of 1s for each speaker turn during the selec-
tion process.



2.2. Boundary elimination

The boundary generation stage produces many false positives
which cannot be eliminated by our simple peak detection algo-
rithm without losing too many real boundaries. The initial set
of boundary positions is pruned by agglomerative clustering of
adjacent speaker turns based on their acoustic similarity given
by ∆BIC:

∆BIC = (NL +NR) log |ΣL+R|
−NL log |ΣL| −NR log |ΣR| − λP (3)

where N and Σ are the number of frames and full covariance
matrix of the corresponding windows respectively. Note that
the windows have a variable length at this stage. P is a penalty
term

P =
1

2

(
d+

1

2
d(d+ 1)

)
log (NL +NR) (4)

with d the dimension of the feature vectors. Inside each continu-
ous speech segment we merge the most similar adjacent speaker
turns with the lowest ∆BIC value and update the ∆BIC val-
ues that are affected by this merge. This process is iterated until
the stopping criterion is met (min ∆BIC > 0). Parameter λ in
(3) controls the number of eliminated boundaries.

3. Agglomerative clustering
The detected speaker turns are merged using the two-stage Ag-
glomerative Hierarchical Clustering (AHC) approach from [3].

3.1. Initial BIC clustering

In the first stage, the clusters still contain little data, and hence
robust techniques are needed. We therefore use BIC-based
clustering. Whereas the boundary elimination only looked at
the acoustic similarity via ∆BIC between adjacent pairs of
speaker segments, we now compare all pairs.

3.2. iVector extraction

In the second stage the clusters contain enough data to apply
more advanced techniques. First, unwanted variation such as
noise and channel is suppressed. A Frame selection module [5]
retains the high-energetic frames only. These frames should be
the least affected by background noise. In addition the features
of the selected frames of each cluster are normalized by means
of Feature Warping [7].

Next, iVector PLDA is used to iteratively merge clusters.
The main idea is to analyze the different sources of variabil-
ity between clusters (speaker, channel, phonetic content,...) as
the speaker clustering should obviously focus on the variability
that can be owed to speaker changes. We use Total Variability
(TV) [2] modeling to initialize the variability analysis. This ap-
proach tries to model as much variability as possible in a low
dimensional subspace. A low rank matrix T , called the TV ma-
trix or the iVector extractor, is used to approximate the GMM
mean supervectormc of cluster c as

mc = m+ Txc (5)

wherem is the supervector of the Universal Background Model
(UBM) of speech. xc is the fixed length iVector that contains
all relevant information concerning cluster c. The procedure
for extracting iVectors is described in [8]. The prior distribu-
tion of the iVectors is assumed to be a standard normal distri-
bution. The TV matrix T is learned form a large data corpus

by means of Principal Component Analysis (PCA) initializa-
tion [9] followed by a number of iterations of the non-simplified
Expectation-Maximization algorithm described in [8].

3.3. PLDA clustering

Now we consider another factor analysis model to extract the
speaker-specific information from the iVectors. As the iVectors
xc are of sufficiently low dimension we can achieve this via the
modified PLDA framework [10]. After whitening and length
normalization [11] each iVector is modeled as

xc = µ+ V yc + εr (6)

where µ is a global offset and V provides the basis for the
speaker-specific subspace. yc is a MAP point estimate of the
latent variable y which has a standard normal distribution. The
residual term εr models the nuisance variability and it is as-
sumed to be Gaussian with zero mean and full covariance Σ.

The scores during AHC clustering can now be computed as
the log-likelihood ratio for a hypothesis test

LLRPLDA(ci, cj) = log
p(xci ,xcj |Hs)

p(xci |Hd)p(xcj |Hd)
(7)

where Hs is the hypothesis that clusters ci and cj are uttered
by the same speaker, Hd assumes different speakers. We can
remove the global offset µ from all iVectors as it will have no
impact on the LLR score. The LLR can now be evaluated as

LLRPLDA(ci, cj) = xTciQxci + xTcjQxcj + 2xTciPxcj (8)

where matrices Q and P solely depend on the total variability
Σtot = V TV + Σ and the inter speaker variability Σinter =
V TV . For more details see [11].

The procedure for extracting iVectors relies on zero- and
first-order statistics generated by the UBM [8]. When the two
most similar clusters are being merged we generate a com-
mon iVector by summing up these sufficient statistics and re-
extracting the new xc. The clustering process is terminated
when the scores stop exceeding a predetermined threshold β.

4. Speaker segmentation via factor analysis
Our experiments indicate that the default LLR boundary gener-
ation of Section 2.1 frequently produces inaccurate boundaries.
Furthermore in future setups we may have prior speaker infor-
mation. This leads us to the idea to use the more advanced
factor analysis based methods for speaker segmentation as well
as these can exploit speaker-specific information more readily.

4.1. Factor analysis based boundary generation

In order to obtain accurate boundaries the decision to insert a
boundary should happen after every frame (or very short block
of frames). First, for each frame we extract speaker factors us-
ing a simple eigenvoice model [12].

mt = m+ V xt (9)

The speaker factor extraction is based on the frames inside a
window of length T centered around the considered frame at
time t. Length T is identical to the enforced minimum duration
of a speaker turn during peak selection of Section 2.1. m is
the supervector of the UBM. Extractor matrix V contains the
R eigenvoices obtained on the training data. We do not use
the Total Variability framework as we want the speaker factors



to react on speaker changes only and not on intra-speaker vari-
ability. Thus, during the training we model the variability be-
tween speaker clusters (by pooling all speaker turns of the same
speaker). In order to get a reasonable computational efficiency
during evaluation the UBM has a low number of mixtures (=32)
and matrix V is of low rank (=20).

Next, we look for significant local changes in the speaker
factors which indicate a speaker change at time t. We there-
fore compare speaker factors at time t− τ and t+ τ . The time
difference 2τ should not be significantly smaller than the ex-
traction window length T as this leads to heavily overlapping
analysis windows. 2τ should also not be too large, otherwise
we may miss very short speaker turns. One option to compute
the distance between speaker factors is the frequently used Co-
sine Distance Scoring (CDS) [2]

DCDS(t) = 1− xt−τ · xt+τ
‖xt−τ‖‖xt+τ‖

(10)

Another option for the distance measure is Euclidean distance

DEUC(t) = ‖∆xt‖ with ∆xt = xt−τ − xt+τ (11)

Given the distances, the same peak selection criterion as de-
scribed in Section 2.1 can be used to select likely speaker
boundaries.

Both distance measures listed above are not all that robust
w.r.t. phonetic variability. Due to the short extraction window
of 1s, the phonetic content has a huge impact on the value of
xt. In [13] it is claimed that intra-speaker variability results
in directional scattering of supervector mt. So the directions
of mt relative to the origin m deliver more speaker-specific
information than the magnitudes. CDS exploits this fact via
length normalization ofxt. However, this procedure is sensitive
to mismatches of the origin m between training and test data.
A more robust way to compensate for the directional scattering
may be the use of a Mahalanobis-based distance. We assume
that the frames in a window of length TΣ to the left of frame at
time t − τ are uttered by the same speaker and we model the
local phonetic variability with a Gaussian with mean µL and
full covariance matrix ΣL. Similarly we determine a ΣR on
the frames to the right of t + τ . We can now define a distance
measure as the sum of two Mahalanobis distances:

DMAH(t) =
√

∆xTt Σ
−1
L ∆xt +

√
∆xTt Σ

−1
R ∆xt (12)

This sum should get maximal when there are changes in xt
which do not get explained by changes in phonetic content, but
rather by real speaker changes. Moreover, this approach should
be much less sensitive to mismatches between training and test
data since the phonetic variability ΣL(R) is measured on the
test data itself. Again, the peak selection remains unchanged.

4.2. Factor analysis for boundary elimination

In an initial set of experiments, we replaced the acoustic
features in the ∆BIC criterion (3) with the speaker factors
from (9). This however did not yield good results.

Since the factor analysis based boundary generation of Sec-
tion 4.1 generates fewer false positives (see later), the average
length of the segments is larger which in turn reduces the impact
of phonetic variability when extracting speaker factors per seg-
ment. If sufficiently robust speaker factors can be extracted, the
CDS can be used to eliminate boundaries as well. This option
was tested with the same eigenvoice model as in Section 4.1.
The elimination is stopped when the minimum CDS value ex-
ceeds a threshold α.

4.3. Two-pass speaker segmentation

The eigenvoices are determined on training data which may not
really match with the evaluation data. In combination with the
fact that we use low-dimensional models for computational rea-
sons, this could result in degraded speaker segmentation mod-
els. This model mismatch can be eliminated in a two-pass sys-
tem, since we can now use the speaker cluster output of an initial
stage to retrain the eigenvoice model V per file. The UBM is
retrained on the speech frames of the analyzed file as well. This
two-pass approach should make the speaker factors much more
robust against phonetic variability as the eigenvoices now form
an exact match with the speakers in the file. The rank of V is
limited to either the number of speakers in the file or R (the
number of eigenvoices used in the first pass), whichever is the
lowest. In the second pass, the whole file is resegmented with
these new models.

5. Experiments
5.1. Data

All models are trained on 66 hours of speech from the 1996
HUB4 Broadcast News training data (3748 speakers). The eval-
uation corpus is the multilingual COST278 corpus1. It consists
of complete TV news shows broadcasted by 16 European TV
stations. It covers 9 national and 2 regional languages. Con-
sult [4] and the website for more details. The corpus is divided
into 12 language sets (but there are two Slovenian sets) of about
three hours each. We used the BE language set for parameter
tuning and the 11 remaining sets for evaluation. The evaluation
data contains a total of 4386 speaker boundaries.

5.2. Evaluation measures

For the evaluation of the speaker segmentation the real (correct)
and computed speaker change points are linked to one-another
if the gap between both is not larger than a forgiveness collar
of 500ms. The formed links determine the recall (percentage
of real boundaries mapped to a computed one) and precision
(percentage of computed boundaries mapped to a real one).

The Diarization Error Rate [14] is a popular metric to eval-
uate the performance of diarization systems. As all systems
use the same oracle speech/non-speech marks we only study
the relevant Speaker Error Rate (SER) component. This SER is
the percentage of frames that are attributed to a wrong speaker
given an optimal mapping between the speaker clusters and the
reference annotation.

5.3. Boundary generation

We evaluate all boundary generation methods and compare
them at different operating points using ∆BIC boundary elim-
ination. The LLR boundary generation uses the following pa-
rameter settings: an LLR window size Nw of 200 frames (2s),
averaging to eliminate spurious peaks is done across a win-
dow of 75 frames, a presumed speaker turn duration r of 5s
and a minimum number of peaks to detect Np,min per speech
segment of 3. We enforce a minimum duration of 1s for
each speaker turn. The precision-recall PR curve in Figure 1
shows the performance of the boundary detection in function of
the ∆BIC boundary elimination parameter λ. We notice the
precision-recall trade-off for varying values of λ. The maxi-
mum recall in a realistic working point (λ = 1.5) is 76.8%.

1http://dssp.elis.ugent.be/cost278bn
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Figure 1: Precision-recall curves for all boundary generation
systems in function of the ∆BIC boundary elimination thresh-
old λ.

The boundary generation proposed in Section 4 uses a 32
mixture UBM. The rank R of V is set to 20. The speaker fac-
tor extraction uses a window size T of 100 frames (1s). Time
difference τ is set to 25 frames which results in an overlap of
50% for the windows of xt−τ and xt+τ . The distance mea-
sure DMAH uses a window TΣ of 175 frames to estimate the
covariances ΣL and ΣR. All other parameter settings remain
identical to ones used in the LLR boundary generation.

All factor analysis based methods presented in Figure 1
clearly outperform the baseline LLR boundary generation. The
use of distance measures DCDS and DEUC results in similar per-
formance. DMAH yields a maximum recall of 90.6% which is
significantly better than all other methods.

5.4. CDS boundary elimination

We study the top-performing DMAH boundary generation fol-
lowed by either ∆BIC or CDS elimination. The PR curves can
be found in Figure 2. CDS elimination is clearly outperformed
by our default ∆BIC elimination.

5.5. Two-pass systems

The first pass always uses DMAH with ∆BIC elimination. The
parameter settings for clustering can be found in Section 5.6. In
Figure 1 the two-pass DCDS boundary generation achieves very
similar results to two-pass DMAH, which indicates the eigen-
voices have become much more robust against phonetic vari-
ability. Adapting DMAH does not yield huge improvements
as this system was already quite robust. Figure 2 shows that
matching eigenvoices allow us to exploit the full potential of
the CDS boundary elimination as the the two-pass DMAH with
CDS elimination clearly outperforms all previous systems.

5.6. Clustering results

The iVector PLDA clustering uses an UBM of 256 mixtures and
the rank of T and V is set to 100 and 80 respectively. We in-
clude extra information of the signal dynamics by including ∆-
features in the feature vector. The threshold λ of the initial BIC
clustering is set to 4.5 and the PLDA threshold β equals 2.5.
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Figure 2: Precision-recall curves for CDS boundary elimination
vs. ∆BIC elimination in combination with the top-performing
boundary generation methods in function of the thresholds λ, α.

The clustering starts from the segmentation results with settings
λ = 3.0 or α = 0.4. Clustering performance is analyzed with
and without standard Viterbi resegmentation on acoustic MFCC
features. The results can be found in Table 1.

resegmentation no yes

SER P R SER P R

DLLR+∆BIC 11.2 53.8 69.6 10.7 62.1 76.0
DMAH+∆BIC 10.2 72.4 82.7 10.1 72.0 79.9

2-pass DMAH+CDS 9.8 76.3 84.0 9.8 76.1 79.1

Table 1: Clustering performance (Speaker Error Rate, bound-
ary Precision and Recall) with different speaker segmentation
modules.

Our proposed factor analysis based speaker segmentation
clearly results in more accurate boundaries. The two-pass sys-
tem reduces the error rate on precision (P) and recall (R) by al-
most 50% relatively. After Viterbi resegmentation the gains are
less pronounced. Whereas resegmentation improves boundaries
generated with DLLR, it deteriorates those generated by DMAH

slightly. The SER improves by 8% relatively from 10.7% to
9.8%.

6. Conclusions
We presented a factor analysis based speaker change detec-
tion that compensates for phonetic variability by using a Maha-
lanobis distance between speaker factors. The method reduces
boundary detection errors by 50% relatively compared to a BIC
baseline. The effectiveness of a two-pass strategy also indicates
that the new method paves the way for new methods to exploit
prior information given about speaker identities.
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[8] O. Glembek, L. Burget, P. Matějka, M. Karafiát, and P. Kenny,
“Simplification and optimization of i-vector extraction,” in
ICASSP, 2011, pp. 4516–4519.

[9] L. Burget, P. Matějka, P. Schwarz, O. Glembek, and J. Černocký,
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