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Abstract—An algorithm is presented for the optimal placement
of access points, followed by a minimization of the cost for
connecting WLAN networks to the power and ethernet network.
The algorithm is described and applied to a simple building
layout. The algorithm outputs an overview of the different costs
and allows WLAN installers to build the cheapest solution.

I. INTRODUCTION

In recent years, the use of wireless communication has

increased drastically. Although deploying a wireless network

obviously requires less cabling than deploying a wired net-

work, the installation cost of wireless networks may still

be considerable. Although many wireless network planner

(algorithms) are available (e.g., [1], [2], [3]), installation cost

has not been accounted for yet in the network planning phase.

To the author’s knowledge, this paper is the first to present a

calculation tool for an optimal wireless design with a minimal

installation cost of Wireless Local Area Networks (WLANs).

The algorithm is applied to a simple building layout.

II. COST MINIMIZATION ALGORITHM

A. Configuration

The algorithm for optimal network planning and minimal

cabling cost will be illustrated for the simple building layout

depicted in Fig. 1. It consists of two rooms sharing a metal

wall. The locations of the power connection points (PCPs) and

ethernet connection points (ECPs) are indicated with green and

red dots respectively.

B. Optimal network planning

For the considered building and starting from an empty

ground plan, the WiCa Heuristic Indoor Propagation Predic-

tion (WHIPP) algorithm plans the wireless network in order to

obtain a coverage rate of 100%, according to the optimization

algorithm described in [1]. The WHIPP algorithm is a heuristic

planning algorithm, developed and validated for the prediction

and optimization of wireless coverage in indoor environments.

It takes into account the effect of the environment on the

wireless propagation channel and bases its calculations on

the determination of the dominant path between transmitter

and receiver, i.e., the path along which the signal encounters

the lowest obstruction. This path is determined with a mul-

tidimensional optimization algorithm that searches the lowest

total path loss, consisting of a distance loss (accounting for

the length of the propagation path), a cumulated wall loss

(accounting for the walls penetrated along the propagation

path), and an interaction loss (accounting for the propagation

direction changes of the path, e.g., diffraction around corners).

The model, constructed for the 2.4 - 2.6 GHz band, has shown

excellent correspondence between predictions and validation

measurements [1]. The network planning algorithm is based

on the consecutive selection of the best next AP from a pool of

possible APs at different locations. A further optimization is

applied by merging two APs where possible (without reducing

coverage). For the considered configuration, the algorithm

outputs a WiFi network with 2 APs (due to the metal wall) with

an Equivalent Isotropically Radiated Power (EIRP) of 16 dBm,

(see purple dot in Fig. 1). In a next phase, the installation cost

will be minimized for this AP configuration.

Fig. 1. Ground plan with reference to algorithm steps (adding cable gutters
2A-2B in step 2, and 3A-3B in step 3). EIRP [dBm] of AP indicated inside
purple dot; red wall = brick; grey wall = metal; grey graph edges connect
AP nodes and/or wall nodes; purple graph edges represent drilled holes;
AP = access point; PCP = power connection point; ECP = ethernet connection
point; light green lines = final cabling).

C. Minimization of installation cost

Access points only function if they are connected to both

a PCP and ECP. The cabling cost minimization algorithm

optimizes the location and the amount of power and ethernet

cables that are needed to connect each AP in the considered

indoor environment to both a PCP and an ECP with the lowest

possible cost, based on the algorithm’s input data: the AP,
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PCP, and ECP positions, the cost of cable (ethernet and

power) and cable gutter (containing the cables) per meter,

drilling holes through walls (material-dependent), and working

hours. The number of working hours is determined by the

number of holes to be drilled, the number of meters of cables

and cable gutters to be installed (dependent on material of wall

they are attached to), and the number of APs to be installed.

It is clear that the physical layout of the ground plan will

greatly influence the output of the algorithm.
1) Algorithm: The cost minimization algorithm is based

on graph theory. Therefore the plan is converted to a graph,

where the graph nodes are APs, PCPs, ECPs, or points on

a wall inside a room. The graph edges represent possible

connections between two nodes. These are a cable gutter

position (grey edges in Fig. 1 between AP nodes and/or wall

nodes in the same room) or a hole in a wall, i.e., two nodes

with the same coordinates, but in different rooms (purple

edges in Fig. 1). Each edge is attributed a weight equal to

the cost of installing the connection (cabling installation or

drilling cost).

To find the solution with the minimal cost, an adapted

version of the Kruskal [4] algorithm for constructing a

Minimum Spanning Tree is applied to the created graph. The

MST does not have to be fully connected though, only the

AP nodes need a connection with a PCP and an ECP. The

algorithm consists of the following steps:

1) Calculate shortest (cheapest) path between each two

nodes of the graph with Dijkstra algorithm

2) Add cheapest cable gutter that connects one of the APs

with a PCP, ECP, or other AP. In our case, this is cable

gutter 2A, connecting AP 1 to the upper PCP. Then,

for the remaining APs: add the cheapest cable gutter

that connects the AP with a PCP, ECP, another AP, or a

cabled1 graph node (here: cable gutter 2B, from AP 2

to the (only) ECP).

3) While not all APs are fully connected2: add the cheapest

cable gutter that connects either two tree components3

or either a tree component of the AP to a PCP or an ECP

(whichever one is not yet cabled in the tree component).

Here, AP 1 is not yet connected to an ECP and AP 2

is not yet connected to a PCP. Therefore, the algorithm

connects the ECP to the lower PCP (cable gutter 3A in

Fig. 1), because it fully connects AP 2 with the lowest

cost. To also have AP 1 fully connected, cable gutters

3B need to be added, as well as a hole in the metal wall

between the two rooms (purple edge 3B).

4) Update cable gutters, since adding new gutters can make

others redundant. Here, the cable gutter 2A along the

wall in the upper room is removed: cable gutters 3B are

required anyway (to connect the AP to the ECP) and the

cost to install power cables along these gutters is lower

1cabled = connected to a cable gutter
2fully connected AP = AP that is connected to both a PCP and an ECP
3tree component = partial set of the graph nodes, which are interconnected

by cable gutters

than the sum of the cost of installing that cable gutter

2A and installing a power cable along it.

5) For all APs: connect AP to PCP with power cable and

to ECP with ethernet cable along the shortest path along

the cable gutters. This yields the layout of Fig. 1. The

location of the cable gutters is indicated in light green,

and ethernet and power cables are installed along them,

between the APs and the ECPs (PCPs).

D. Evaluation

The tool automatically outputs an overview of the installa-

tion costs, as listed in Table I. Unit prices can be modified by

the user (different manufacturer, different worker), which may

lead to different optimal cable positions. The total cost for

the considered scenario equals $ 986.24, whereas traditional

network planners only take into account the AP cost (i.e.,

$ 230, only 23 % of the total cost).

TABLE I
COST OVERVIEW.

Unit price Cost [$]

Cable gutter 20.02 m $17.75 /m 355.36
Ethernet cable 19.9 m $2 /m 39.8
Power cable 19.9 m $6.2 /m 123.38
AP 2 $115 230
Working hours 2.53 h $90 /h 227.7

Installing APs 1 h 90
Making holes 0.2 h 18
Installing cabling 1.33 h 119.7

Holes 1 $10 10
Total cost 986.24

III. CONCLUSIONS

An algorithm is presented for optimal wireless network

planning and minimization of the installation cost of access

point cabling. For a simple application case, it is shown that

the installation (cables, gutters, drilling) costs more than 3

times as much as the APs themselves, indicating the necessity

of cabling cost calculation during the network planning phase.

Future research includes an economic optimization where

the choice of the AP locations is also included in the cost

minimization process.
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