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Summary
Accurate and efficient calculation of diffraction over rigid obstacles is needed for sound propagating
over city canyons and for applications to urban noise mapping. Uniform diffraction theory offers very
accurate solutions. However, these solutions depend on complicated input parameters and usually
take more CPU time than engineering approximations. In this paper, simplified diffraction functions
to approximate single, double and multiple diffraction are presented. Their formulation is based
on a simplification of the Fresnel integral and their accuracies depend on the relative locations of
the source, obstacle and receiver. Compared with the non-simplified diffraction model, most of the
receiver positions can reach an acceptable accuracy except for positions close to the boundary line
where a 3 dB error is expected.

PACS no. 43.20.El, 43.55.-n

1. Introduction

Sound propagating over obstacles dominates the pre-
cision of sound pressure level predictions in the
shielded areas. Methods based on the diffraction the-
ories, such as those presented in [1, 2, 3], were shown
to be very accurate [4, 5]. Relevant parameters are
the diffraction path, diffraction angle and the wedge
angle, often requiring complicated input parameters
and long CPU time. Therefore, they are not easily
implemented in urban noise mapping methods. The
insertion loss in some engineering models, such as
ISO9613-2 [6] and CNOSSOS-EU [7] models, are only
relevant to the barrier width and difference between
the direct path and diffracted path. These models are
easier to implement, however, the accuracies are not
always satisfied. In this article, a simple but still ac-
curate method to calculate the sound diffraction over
a thin wedge, a thick barrier and even complicated
shapes will be introduced and validated. This method
not only can be used to calculate the insertion loss
of an obstacle but also the sound pressure behind the
obstacle.

(c) European Acoustics Association

The current model is based on the approximation
of the Fresnel integrals. The Fresnel integrals can be
considerably simplified if the input arguments are suf-
ficiently large (>1). However, in urban configurations,
these inputs are frequently close to zero [5], which
leads to strong singularities. In this article, a different
simplification of the Fresnel integral will be proposed,
which is suitable for propagation in an urban area.

2. Single diffraction over a rigid
wedge

According to [1, 8], the diffracted sound pressure is
a product of a source term, a term related to prop-
agation distance and a diffraction term. For a point
source diffracted by a rigid wedge, as shown in figure
1(a), the diffracted sound pressure reads:

pdiffr = S0
eikL

L
D1, (1)

with

D1 = eiπ/4
√

2
[AD(X+) +AD(X−)] (2)

D1 is the diffraction function, where AD =
sign(X)[f(|X|)−ig(|X|)]. f(|X|) and g(|X|) are func-
tions of the Fresnel integral C(X) and S(X).
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C(X) =
∫ X

0
cos
(

1
2πt

2
)
dt,

S(X) =
∫ X

0
sin
(

1
2πt

2
)
dt,

The C(X) and S(X) are approximated as the fol-
lowing simple form:

C(X) ≈ 0.5 + 0.37
0.37 +X

sin
(π

2X
2
)

(3)

S(X) ≈ 0.5− 0.37
0.37 +X

cos
(π

2X
2
)

(4)

Substituting equations 3 and 4 into equation 2, the
diffraction function for a rigid wedge is then obtained:

D1 = eiπ/4
√

2

(
0.37

0.37 +X+
+ 0.37

0.37 +X−

)
(5)

D1 is determined by rs, θs, rr, θr as shown in figure
1(a). The input argument X+ and X− are the same
as in Ref. [1]. The corresponding insertion loss of a
single wedge is:

IL1 = −10 log10

[R2

L2

( 0.37
0.37 +X+

+ 0.37
0.37 +X−

)2]
(6)

with R is length from the source to the receiver and
L the length of the diffraction path.

3. Double diffraction over a wide rigid
barrier

A double diffraction, as shown in figure 1(b), can be
approximated as a single diffraction wave produced
from edge 1 and then subsequently diffracted by edge
2 to reach the receiver. Therefore, the double diffrac-
tion function is the product of two single diffraction:

D = D1D2

= i/4
(

0.37
0.37 +BXS+

+ 0.37
0.37 +BXS−

)
(

0.37
0.37 +XR+

+ 0.37
0.37 +XR−

)
(7)

For a double diffraction over a rectangular barrier,
it could be easily proved thatXS+ = XS− andXR+ =
XR−. Therefore, equation 7 can be simplified as:

D = i

(
0.37

0.37 +BXS+

0.37
0.37 +XR+

)
(8)

The input arguments XS+, XR+ and B are the
same as in Ref. [1].

The corresponding insertion loss of a rigid rectan-
gular barrier is then:

IL2 = −10 log10

[R2

L2

( 0.37
0.37 +BXS+

)2

(
0.37

0.37 +XR+

)2
]

(9)

4. Multiple diffraction over complex
obstacles

Similar to the generalization from single diffraction to
double diffraction, the multiple diffraction term can
be considered as a relay from the previous diffrac-
tion edges as shown in figure 1 (c,d). The diffracted
sound pressure is recursively calculated by the pre-
vious diffraction. Therefore, the (n − 1)th diffracted
sound pressure by path S1 · · ·n is:

pS1···n
n−1 = pS12

1
L1

Ln−1
D2...Dn−1e

ik(Ln−L1) (10)

Substituting equation (1) to equation (10), form for
the sound pressure at the nth diffraction point or a
receiver point after n-1 diffraction then reads:

pS1···n
n−1 =

(
1
2

)C
S0
eikLn−1

Ln−1

n−1∏
l=1

Dl n = 2, 3, · · ·(11)

Equation 11 is similar as equation 1 and it equals
the product of the divergence from the source and its
diffraction function, where the diffraction function Dl

is:

Dl = eiπ/4
√

2

(
0.37

0.37 +BlXl+
+ 0.37

0.37 +BlXl−

)
(12)

where, Xl+ = γlMν(θl+). Xl− = γlMν(θl−). θl+ =
θs,l + θr,l. θr,l is the angle from the right diffraction
edge and the connecting line between the diffraction
edge to the “receiver” and θs,l is the angle from the
right diffraction edge to the connecting line between
the diffraction point to the “source”. For the demon-
stration of these above inputs, figure 1 (c) and (d)
show some examples. The parameters Bl, γl and Mνl

are:

Bl =

√√√√√√√√√√
Wl,l+1(rs +

n−1∑
j=1

Wj,j+1 + rr)

(rs +
l∑

j=1
Wj,j+1)(rr +

n−1∑
j=l

Wj,j+1)

(13)
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Figure 1. Geometry of single-wedge (a), double-edge (b) diffraction and multiple diffraction (c) and (d).

γl =√√√√√2
(
rs +

∑l−1
j=1 Wj,j+1

)(
rr +

∑n−1
j=l Wj,j+1

)
λ
(
rs +

∑n−1
j=1 Wj,j+1 + rr

)
(14)

Mνl(θl) = (cos νlπ − cos νlθl)/(νl sin νlπ), (15)

where rs is the distance from the source to the first
diffraction edge; Wl,l+1 is the distance between edge
l and edge l + 1; rr is the distance from the receiver
to the last diffraction edge.
The corresponding insertion loss for multiple

diffraction is:

ILn = −10 log10

[
R2

L2
n−1

(
1
2

)2C n−1∏
l=1

D2
l

]
(16)

5. Validation

For single and double diffraction, strict and relative
complex methods have been published [1] [2]. To val-
idate the here proposed model, the same validation
cases are used as mentioned in Pierce’s publication.
Figure 2 and figure 3 show the validation results for
different relative propagation paths. Our simplified
method coincides with Pierce’s method very well ex-
cept for positions near the boundary line.
Multiple diffraction may occur in considerably dif-

ferent configurations as shown in figure 1(c) and (d).
Here the configuration of (c) is chosen as the valida-
tion case whose dimensions are shown in figure 4 and
the results are shown in figure 5. In the contour plots,
the predicted errors in most of the positions are less
than 2 dB.
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Figure 2. Validation for the single diffraction case. In the
legend, “Pierce” is the method presented by Pierce; “Sim-
plified” is the set of equations introduced in this paper.
rs = rr = 1λ, 10λ and 100λ, up to down, respectively,
β = 11/6π, θs = π/6.

6. Conclusions

A simplified model to calculate the diffraction over
rigid obstacles is presented and validated. The simpli-
fied model results in less than 2 dB prediction errors
in most of the tested locations. This model could be
used to urban noise mapping.
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Figure 5. Contour plots showing the sound pressure level difference (Lsimplified −LP ierce) in the receiver zone as defined
in figure 4. Lsimplified is the sound pressure level calculated by our simplified method and LP ierce is the sound pressure
level calculated by Pierce’s [1] and Kawai’s [2] method.
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Figure 3. Validation for the double diffraction case. The
legend is the same as single diffraction. rs = rr = W =
1λ, 10λ and 100λ up to down respectively, βs = βr = 1.5π,
θs = π/4

Figure 4. Configuration for the validation of multiple
diffraction case.
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