Identification of Subcellular Structures with Raman Microspectroscopy

Tobias Corne ${ }^{1,2}$, Pieter Wuytens ${ }^{1,2,3}$, Claudia Beleites ${ }^{4}$, Andre Skirtach ${ }^{1,2}$, Winnok De Vos ${ }^{1,2,5}$

Introduction

Raman microspectroscopy (RMS) is a technique which enables noninvasive, label-free imaging of cells. RMS probes molecular vibrations and generates a molecular fingerprint which can be used to discriminate different subcellular structures within a cell. Here we collected Raman spectra by raster-scanning fixed Hela cells under a confocal Raman microscope (alpha300 R, WITec, GmbH, Ulm, Germany) at 785 nm excitation with $0.5 \mu \mathrm{~m}$ step size and 1 s integration time per spectrum. Preprocessing and data analysis was performed in R using the hyperSpec package (Beleites \& Sergo, http://hyperspec.r-forge.r-project.org, 2014). Cluster analysis allowed us to segment several subcellular structures, such as the nucleus and lipid droplets (LDs). The number of LDs was increased in Hela cells by cycloheximide treatment, Hoechst (DNA stain) and bodipy 493/503 staining (neutral lipid stain) correlated with the segmented nucleus and LDs, respectively. The average Raman spectrum of the nucleus contained a DNA specific peak ($788 \mathrm{~cm}^{-1}$) and the average spectrum of LDs showed great similarities with the reference spectrum of triolein, the symmetrical triglyceride of oleic acid.

Data preprocessing

After data acquisition the hyperspectral datasets were preprocessed. In a first step pixels containing cosmic rays were removed and replaced by the mean spectrum of four adjacent pixels. Next, signal-to-noise ratio (SNR) was increased by smoothing and interpolation. The spectra were smoothed by local polynomial regression fitting and in parallel interpolated on a new wavelength axis with equidistant spacing. The background was removed by baseline correction using the baselineWavelet package (Zhang et al., http://code.google.com/p/baseline wavelet, 2009). To estimate the baseline, peak position was accurately detected by continuous wavelet transformation (CWT), peak-width was estimated by SNR enhancing derivative calculation based on CWT, and finally the baseline was fitted using penalized least squares with binary masks. After baseline correction the data distribution was studied with principal component analysis (PCA) and outliers were removed and replaced by the average spectrum of eight adjacent pixels. Finally the spectra were min-max normalized to minimize the influence of the focal volume on the signal. The minimum of each spectrum was scaled to 0 and the maximum to 1 . Following preprocessing the data was analyzed using different clustering and spectral unmixing methods.

Conclusion and future perspectives

We have shown that RMS can be used to identify subcellular structures in a label-free manner. By using clustering methods we were able to identify the nucleus and LDs. In future more subcellular regions should be correlated with a fluorescent stain, i.e. ER-Tracker and MitoTracker staining. In addition, the effect of altered lipid metabolism can be studied by searching for changes in the average spectrum of LDs.

