
Automatic bootstrapping of OpenFlow networks

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet and Piet Demeester
Department of Information Technology (INTEC), Ghent University - iMinds

E-mail: {firstname.lastname}@intec.ugent.be

Abstract—OpenFlow decouples the control plane functionality
from switches, and embeds it into one or more servers called
controllers. One of the challenges of OpenFlow is to deploy a
network where control and data traffic are transmitted on the
same channel (in-band mode). Implementing such an in-band
mode is complex, since switches have to search and establish a
path to the controller (bootstrapping) through the other switches
in the network. In this paper, we propose a method that facilitates
this automatic bootstrapping of switches. In this method, the
controller establishes its own control network through the neigh-
bor switches that are connected to it by the OpenFlow protocol.
We measure suitability of the proposed method by performing
bootstrapping experiments in different types of topologies: linear,
ring, star and mesh topologies. The experimental results show
that the proposed method allows bootstrapping in a minimal
time, which makes it suitable even for a large network.

I. INTRODUCTION

There is sometimes need to define behavior of networks
in a custom manner. Historically, this was possible only
by proprietary hardware that was prohibitively expensive or
impossible to obtain by researchers and experimenters. The
need of this functionality exists in order to run wide-scale
projects implementing new experimental protocols. Therefore,
in the field of networks, the OpenFlow technology [1] which
controls networks freely by software located at one or more
servers (so called controllers), has caught attention of many
research communities. OpenFlow is developed in a clean-slate
future internet program by Stanford University, which aims to
offer a programmable network to test new protocols in current
Internet platforms. The core idea of OpenFlow is to decouple
the control plane functionality from network switches, and
to embed it into one or more servers called controllers. This
makes switches/routers inexpensive. In addition, this imparts
network flexibility, as the control plane functionality is moved
to the controllers, while only forwarding is required to be done
in hardware.

OpenFlow is based on the fact that most modern
routers/switches contain a proprietary FIB (Forwarding Infor-
mation Base) which is implemented in the forwarding hard-
ware using TCAMs (Ternary Content Addressable Memory).
OpenFlow provides the concept of a FlowTable that is an
abstraction of the FIB. Additionally, it provides a protocol
to program the FIB via adding/deleting/modifying entries in
the FlowTable. This is achieved by one or more controllers
that communicate with the OpenFlow switches using the
OpenFlow protocol (Fig. 1). The switch/router that exposes
its FlowTable through the OpenFlow protocol is called an
OpenFlow switch/router.

An entry in the FlowTable consists of: (1) a set of packet
fields to match with incoming packets (called as flow), (2)
statistics which keep track of matching packets per flow, and
(3) actions which define how packets should be processed.

When a packet arrives at an OpenFlow switch, it is compared
with the Flow Entries in the FlowTable. If a match is found,
the actions specified in the matching entry are performed. If
no match is found, the packet (a part thereof) is forwarded
to the controller. Thereafter, the controller makes a decision
on how to handle the packet. It may return the packet to the
switch indicating the forwarding port, or it may add a Flow
Entry directing the switch on how to forward packets with the
same flow.

D

A

S

OpenFlow Protocol

Controller

A, B, C ,D

D

A

S

OpenFlow Protocol

Controller

Control

traffic path

Data traffic

path

(A) (B)

C

B

A, B, C ,D

are OpenFlow

switches

C

B

A, B, C ,D

are OpenFlow

switches

path

Fig. 1. OpenFlow network: (A) In-Band Mode (B) Out-of-Band Mode

In OpenFlow, control messages (e.g. messages to add Flow
Entries in the switches) are required to be exchanged between
the controller and switches. These messages can be exchanged
either in an in-band or in an out-of-band mode. In the case
of an in-band mode, control messages are sent on the same
channel used to transport data traffic, whereas in the case of
an out-of-band mode, control messages are sent on a different
channel. As shown in Fig. 1, in the in-band mode, switches A,
B, C and D share a same channel for control and data traffic,
and in the out-of-band mode, switches A, B, C and D use a
different channel for control and data traffic. The out-of-band
mode is simpler and easier to design because the controller
is directly connected (physically) to each of the switches.
However, the out-of-band mode might not be possible in some
scenarios, for example, a widely distributed central offices in
access networks. In addition, due to the requirement of an
extra physical port on each switch, the out-of-band mode is
expensive to build in a real network.

In the in-band mode, switches do not need an extra phys-
ical port for control traffic. OpenFlow defines a virtual port
(reserved) in a switch called as local port, which enables
remote entities (e.g. controller) to interact with the switch via
an OpenFlow network (in-band mode). OpenFlow, however,
does not describe how control traffic paths can be established
in the OpenFlow network. This task is especially challeng-
ing in the case of the in-band mode, since switches need
to establish these paths through the other switches in the
network. Establishing control traffic paths is important because
an OpenFlow session needs to be established through these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55690613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

paths (bootstrapping). In this paper, we propose a method
that facilitates this automatic bootstrapping of switches. In
this method, the controller establishes its own control network
through the switches that are connected to it by the OpenFlow
protocol.

The proposed method is emulated using different types of
topologies, which vary with different scales (degree, number
of nodes, and distance from the controller). The emulation
results show that the proposed method allows bootstrapping in
a minimal time. It shows that the scalability and simplicity of
the method make it suitable even for a large network.

The rest of the paper is organized as follows: section
2 presents our approach of bootstrapping, section 3 gives
mathematical derivation of the bootstrapping time, section 4
describes the emulation environment and results, and finally
section 5 concludes.

II. BOOTSTRAPPING OF OPENFLOW NETWORKS

This section is divided into three parts. The first part gives
an overview of our bootstrapping approach. The second part
describes the OpenFlow mechanisms and the messages that are
used for bootstrapping. The third part gives the bootstrapping
approach in detail.

A. Overview of our bootstrapping approach

Bootstrapping of a switch in an OpenFlow network requires
at least two steps:

1) Assignment of connection identifiers for connecting
the switch to the controller. The connection identifiers
required are at least the IP address of the local port
and the IP address of the controller. The other iden-
tifiers can be MAC and transport layer parameters.
Transport layer parameters may include a transport
layer protocol and a port number.

2) Instantiation of an OpenFlow session with the con-
troller.

The first step can be accomplished by using protocols such
as DHCP (Dynamic Host Configuration Protocol), OF-config
(OpenFlow management and configuration protocol) [2] or
ARP (Address Resolution Protocol). ARP can allow switches
to know the MAC address of the controller. DHCP or OF-
config can assign a unique IP address to a switch (i.e. local
port), and can allow it to know the other identifiers (IP address
of the controller and transport layer parameters) to connect
with the controller.

We used ARP and DHCP to accomplish the first step. In
the case of DHCP, we assumed that either the DHCP server
is located in the controller node or it is the neighbor of the
switch that is directly connected (physically) to the controller.

For bootstrapping, each switch runs a DHCP client and keep
on flooding DHCP messages to its neighbors until it receives
a reply from the DHCP server. If a neighbor is the DHCP
server, it replies to the switch. In the case the neighbor is a
switch connected to the controller by the OpenFlow protocol,
the controller allows the switch to forward DHCP messages
to the DHCP server. In the case the neighbor switch is not
connected to the controller, the messages are dropped.

Once a switch has an IP address and it knows the other
identifiers by the DHCP protocol, the switch learns the MAC
address of the controller by the ARP protocol. If the transport

layer protocol between the switch and the controller is TCP
(Transmission Control Protocol), the switch then establishes
a TCP connection with the controller. The switch is able
to establish the connection in at least one of the following
cases: (1) the controller is directly connected (physically) to
the switch, (2) a neighbor switch has an OpenFlow session
with the controller.

When a switch has a transport layer connection with the
controller, the switch instantiates an OpenFlow session (the
second step). The OpenFlow session can be established along
the same path used to establish the transport layer connection.
Bootstrapping of an OpenFlow network completes when each
switch in the network has an OpenFlow session.

B. OpenFlow mechanisms and messages in bootstrapping

We used “local” and “normal” mechanisms of OpenFlow
to implement the bootstrapping approach mentioned in the
previous subsection. By the local mechanism, we refer to the
local networking stack of an OpenFlow switch, which can
be used to communicate with remote entities (DHCP server
or controller). In order to communicate with remote entries,
OpenFlow defines a local port. The local port allows the local
networking stack to send or receive packets to or from remote
entities. For bootstrapping, we run a DHCP client, a TCP/IP
stack, and an OpenFlow stack in the local networking stack.

In the case of the normal mechanism, an OpenFlow switch
forwards packets using Ethernet switching technologies such
as MAC learning. In the case of MAC learning, MAC ad-
dresses are learned through the source MAC address and
the incoming port of a packet. In the case the destination
address is an unknown address or the broadcast address,
the packet is flooded. In the case the destination address is
already learned, the packet is forwarded through the learned
port. This mechanism is used in our bootstrapping approach
when a switch is not connected with the controller and the
switch has to forward its own control traffic (e.g. DHCP
messages or messages to instantiate an OpenFlow session)
without contacting the controller.

In order to perform bootstrapping, we also used some of
the messages of the OpenFlow protocol. These messages are
Hello, Feature-Request, Feature-Reply, Packet-In, Packet-Out
and Flow-Mod messages. With a Hello message, a switch and
the controller match a version of the supported OpenFlow
protocol. In the case the version matches, the controller re-
quests the features of the switch by sending a Feature-Request
message. Upon receipt of the Feature-Request message, the
switch replies the controller by sending a Feature-Reply mes-
sage. These messages (Hello, Feature-Request and Feature-
Reply) are used to instantiate an OpenFlow session. The
other messages such as Packet-In, Packet-Out and Flow-Mod
messages are used to control packet forwarding in switches.
In the case a switch needs to transmit an unknown packet, the
packet is first sent to the controller in a Packet-In message. In
the case the controller needs to send a packet through a port
of a switch, the packet is sent to the switch in a Packet-Out
message. In the case the controller needs to add a Flow Entry
in a switch, the controller sends a Flow-Mod to the switch.

C. Detailed bootstrapping

In this section, we describe bootstrapping in detail by
taking an example of an OpenFlow network shown in Fig. 2.

3

1

1

4

1

D

B

C

A

S

1
2

2

2

Controller

DHCP Server

A, B, C, D are the OpenFlow switches

The numbers on a link (e.g. 1, 2, 3 or 4)

are the port numbers of the switches

connected by the link

2

Fig. 2. A topology to describe bootstrapping

In Fig. 2, the DHCP server and the controller are directly con-
nected (physically) with switch A. For bootstrapping, DHCP is
enabled with Option 43 [3]. This option allows a programmer
to program vendor-specific information in the DHCP server.
In our case, vendor-specific information is the controller IP
address and transport layer parameters. The DHCP clients in
our bootstrapping approach request this information by sending
a “vendor class identifier” in a DHCP Discover message.

The controller in our approach maintains a topology database
which contains IDs (switches IDs, the controller ID and the
DHCP server ID) and links information. We assigned the ID
of a switch equal to the MAC address of the switch local
port. At the initial stage when no switch is connected with the
controller, the topology database has only the controller and
the DHCP server as IDs. During bootstrapping, the controller
gathers a topology of neighbor switches by transmitting a
special kind of probe messages from (or to) the recently
connected switch. The format of these probe messages is
inline with the Link Layer Discovery Protocol (LLDP) [4].
Topology gathering is important in our approach because
during bootstrapping the controller needs to find a path to any
switch or to the DHCP server.

In bootstrapping, each switch and remote entities exchange
a sequence of messages. This sequence is shown in Fig. 3. In
order to exchange these messages, a switch uses the local and
the normal mechanism of OpenFlow.

We now explain bootstrapping of switches A, B, C and D
(shown in Fig. 2). The first message exchanged by each of the
switches is the DHCP Discover message (shown in Fig. 3). At
the stage, when the local port of a switch does not have an IP
address, a DHCP client in the local networking stack transmits
a DHCP Discover message from its local port.

The DHCP Discover message transmitted from the local port
(switch own control traffic) is handled by the normal mecha-
nism of the same switch. As the destination MAC address of a
DHCP Discover message is the broadcast address, the normal
mechanism of each switch floods the DHCP Discover message
through all its outgoing ports (e.g. 1,2,3, or 4 in Fig. 2).

1) Bootstrapping of switch A: At the stage when no switch
is connected with the controller, all DHCP Discover messages
are dropped except the one that is transmitted through port
1 of switch A (see Fig. 2). The messages are dropped in
our bootstrapping approach because neighbor switches or the
controller that have received these messages have no way to
forward unknown traffic. The DHCP Discover message of

OpenFlow

Switch
Remote Entities

(DHCP Server or Controller)
(1) DHCP Discover

(2) DHCP Offer

(3) DHCP Request

(4) DHCP Ack

(5) ARP Request

(6) ARP Reply

(7) TCP Syn

DHCP Handshake to provide

connection identifiers for

connecting a switch to the

controller

ARP messages to provide the

controller MAC address to a

switch

(10) Hello

(11) Hello

(7) TCP Syn

(8) TCP Syn ack

(9) TCP Ack

(12) Feature Request

(13) Feature Reply

(14) Probe messages

switch

TCP 3-way handshake to

establish a connection between

a switch and the controller

Messages to establish an

OpenFlow session between a

switch and the controller

Probe messages to discover a

topology

Fig. 3. Message Exchange between a switch and the controller

switch A, which is not dropped, reaches to the DHCP server.
Upon receipt of the DHCP Discover message from the DHCP
client of switch A, the DHCP server returns a DHCP Offer
message (message (2) in Fig. 3). The DHCP Offer message
contains an unleased IP address and the string containing
vendor-specific information. Switch A receives this message
through port 1. As the destination MAC address of the DHCP
Offer message is the MAC address of the local port (switch
A own control traffic), the message is handled by the normal
mechanism of switch A. Thereafter, the normal mechanism
forwards the message to the local port. The message reaches
to the DHCP client of switch A via the local port.

The DHCP client of switch A now stores vendor-specific
information from the DHCP Offer message, and responds by
transmitting a DHCP Request message (message (3) in Fig. 3)
through the local port. The DHCP Request from the local port
is handled by the normal mechanism of switch A. The normal
mechanism then floods the DHCP request message through all
its ports because the destination MAC address is the broadcast
address. The DHCP Request which is transmitted through port
1 of switch A, reaches to the DHCP server. The DHCP server
acknowledges the DHCP Request by sending a DHCP Ack
message (message (4) in Fig. 3). Upon receipt of the DHCP
Ack, the normal mechanism of switch A transmits the Ack
to its local port, and thereby the DHCP client receives this
message. Thereafter, the DHCP client assigns the IP address
to the local port. The local networking stack of switch A now
parses the vendor-specific information (stored at the time of the
DHCP offer message), and it knows the controller IP address
and transport layer parameters to connect with the controller.

The local networking stack of switch A now transmits an
ARP request message (message (5) in Fig. 3) through the local
port to know the controller MAC address. The ARP request
is now flooded by the normal mechanism of switch A. The
controller receives this request through port 2 of switch A.
Upon receipt of the ARP request, the controller returns the
MAC address in an ARP reply message (message (6) in Fig.
3). Switch A receives this reply through port 2. The normal
mechanism of switch A then forwards the reply to its local
networking stack by sending it to the local port. In addition,
MAC learning mechanism in switch A learns the output port
(i.e. port 2) to reach the controller.

Assuming TCP as a transport layer protocol in the vendor
specific information, the local networking stack of switch A
starts a TCP connection upon receipt of the ARP reply. In this

TCP connection, the local networking stack sends a TCP syn
message (message (7) in Fig. 3) from the local port of switch
A. The normal mechanism of switch A then sends it through
port 2 (learned port for the controller). Upon receipt of the
TCP Syn, the controller sends a TCP Syn Ack (message (8)
in Fig. 3) to switch A. When switch A receives the Syn Ack,
the normal mechanism of switch A forwards it to the local
port. The local networking stack acknowledges then the Syn-
Ack by sending a TCP Ack (message (9) in Fig. 3). At this
stage, switch A has a TCP connection with the controller.

After establishing the TCP connection, the OpenFlow stack
in the local networking stack of switch A instantiates an
OpenFlow session by sending a Hello message (message (10)
in Fig. 3) to the controller through the local port. The normal
mechanism then sends the Hello message via port 2. Upon
receipt of the Hello message, the controller replies back with
the Hello message (message (11) in Fig. 3). The controller then
sends a Feature request message (message (12) in Fig. 3). Upon
receipt of the Feature Request message, the OpenFlow stack of
switch A sends a Feature Reply message (message (13) in Fig.
3) through the local port. The normal mechanism sends this
message to the controller via port 2. The controller receives
the Feature Reply message, and declares an OpenFlow session
with switch A. In the Feature reply message, switch A has sent
all its attributes/parameters including the MAC address of its
local port. Henceforth, the controller adds the MAC address of
the local port as the ID of switch A in its topology database.

At this time the controller does not know how switch A
(this is the only switch present in the topology database) is
connected with the controller. To know this, the controller
sends a probe message to switch A. Upon receipt of the
message, switch A treats this as unknown traffic, and sends this
back to the controller as a Packet-In message. The Packet-In
message includes the ID of switch A and the incoming port of
the probe message (i.e. port 2) in its message. Upon receipt of
the Packet-In message, the controller now finds that the Packet-
In message is generated by switch A and there is no path in
its topology database to reach from switch A to the controller.
Therefore, the controller adds a link in its topology database
such that switch A is connected to the controller through port
2. In order to take control over control traffic of switch A, the
controller at this time may add two Flow Entries in switch A.
The first entry can be for the flows containing the destination
MAC address as the MAC address of the local port. The second
entry can be for the flows containing the incoming port as the
local port and the destination address as the controller address.

2) Bootstrapping of switches B, C and D: When switch A
established a session with the controller, switch B, switch C
and switch D are in the initial phase of transmitting DHCP
Discover messages. As switch B and switch D in Fig. 2 are
directly connected (physically) with switch A, DHCP Discover
messages from switch B and switch D reach at switch A.
Switch A has now an OpenFlow session with the controller.
Therefore, upon receipt of the DHCP Discover messages,
switch A sends these messages to the controller in Packet-
In messages. Let us take the case when the DHCP Discover
message from switch B reaches to switch A. The Packet-In
message in this case includes the ID of switch A and the
incoming port of the DHCP message i.e. port 4 in its message.
Upon receipt of the Packet-In message, the controller finds that
the message in the Packet-In is the DHCP message (because

the message has the destination transport layer port equals to
67) and the source of the DHCP message (i.e the local port of
switch B) is not present in its topology database. Therefore,
the controller adds the ID of switch B in its topology database.
In addition to the ID, the controller adds a link in its topology
database such that switch B is connected to switch A through
the incoming port of the DHCP message (i.e. port 4).

The controller does not know at this time the location of
the DHCP server, therefore, it sends a Packet-Out message to
switch A to flood the DHCP Discover message from all ports
of switch A except the incoming port of the DHCP Discover
message (port 4). Upon receipt of the DHCP Discover message
from port 1 of switch A, the DHCP server sends the DHCP
offer message to switch B. The DHCP Offer message is now
received by switch A through port 1. However, switch A
does not know how to handle this message. Therefore, it
sends the message to the controller in the Packet-In message.
This Packet-In message includes the incoming port of the
DHCP Offer message (port 1) and ID of switch A in its
message. Upon receipt of the Packet-In message, the controller
calculates a path from switch A to the destination of the DHCP
offer message (i.e. switch B). As the controller knows the path
to switch B through port 4 of switch A, the controller sends a
Packet-Out message to switch A to forward the DHCP Offer
message via port 4. In addition, the controller finds that this
DHCP message is from the DHCP server (because the message
contains the transport port of the source as 67). Therefore, the
controller adds a link in its database such that switch A is
connected to the DHCP server through the incoming port of
the DHCP Offer message (i.e. port 1).

Upon receipt of the DHCP offer message, the normal
mechanism of switch B handles this message, and forwards
this to its local port. Switch B now exchanges the other
messages (the message (1) to (13) in Fig. 3) to instantiate
an OpenFlow session. In this cases, all messages of switch B
go through switch A.

Note that the controller at this time (the time when the
switch B has exchanged all messages (1) to (13)) does not have
complete information about the links of switch B. In our case,
the controller does not know which port of switch B connected
to port 4 of switch A. Therefore, the controller transmits
probe messages through each port of switch B after having
the OpenFlow session with it. A probe message contains the
ID and the outgoing port of switch B from where the probe
message has to be transmitted. The probe message of switch
B, which is sent from port 1 of switch B, reaches to switch A
through port 4. As the probe message is unknown traffic for
switch A, it is sent to the controller in a Packet-In message.
Upon receipt of the Packet-In message, the controller now
parses the probe message, and finds that the message is sent
from port 1 of switch B. As the incoming port of the Packet-
In is port 4 of switch A. The controller updates the link of
switch A in its topology database such that port 4 of switch A
is connected to switch B by port 1. After this, the controller
adds Flow Entries in switch A and switch B for the control
traffic of switch B.

Like switch B, switch D in our bootstrapping approach also
establishes an OpenFlow session with the controller. Like the
same way, the controller transmits probe messages from switch
D after having the session with it, knows the link connecting
switch D to switch A, and adds Flow Entries in switch A and
switch D for the control traffic of switch D.

At the time switches A, B and D have OpenFlow sessions
with the controller, switch C may be in the initial stage of
transmitting the DHCP Discover messages. In the case of
switch C, the DHCP Discover messages are received by switch
B and switch D. Switch B and switch D have now OpenFlow
sessions with the controller. Therefore, the DHCP messages
from switch B and switch D will be sent to the controller in
Packet-In messages. Let the Packet-In message from switch
B first reaches the controller. Upon receipt of the Packet-In
message from switch B, the controller adds switch C in its
database and adds a link in its database such that switch B is
connected to switch C through port 2. In the case the controller
does not know the port of switch B along the calculated path
to the DHCP server (because the controller may have not
transmitted/received a probe message giving information about
the link between switch B and switch A), the controller replies
switch B to drop the message. In the case the controller knows
the port of switch B along the calculated path to the DHCP
server, it replies to B to forward the message along the path.

In the case of the Packet-In message from switch D, the
controller adds a link in its topology database such that switch
D is connected to switch C through port 1. Like the DHCP
Discover message from switch B, the controller replies switch
D to forward the message to the DHCP server along the
available path. Thereafter, two DHCP Discover messages from
switch C may reach to the DHCP server (the one from
the path C-D-A and the other from the path C-B-A). Upon
receipt of these messages, the DHCP server replies to only one
DHCP Discover message by sending a DHCP Offer message.
Therefore, at the end one DHCP Offer message reaches to
switch C. Switch C now exchanges all other messages (shown
in Fig. 3) with the DHCP server and the controller. The
messages exchanged are similar to the sequence of messages
exchanged at the time of bootstrapping of switches A, B and
D. After exchange of the messages, switch C will have an
OpenFlow session with the controller.

The controller now gathers information about all links of
switch C by transmitting probe messages from all ports of
switch C. After this, for the control traffic of switch C,
the controller adds the Flow Entries along a calculated path
(shortest) from switch C to the controller.

III. EMULATION ENVIRONMENT AND RESULTS

In this section, we describe the testbed, topologies, method-
ology and results of the bootstrapping experiments.

We performed emulation on our virtual-wall testbed which is
a generic test environment for advanced network, distributive
software and service evaluation. We created linear, ring, star
and mesh topologies in our testbed nodes to perform boostrap-
ping in OpenFlow networks. The topologies were created by
using Linux processes in different network namespaces. In all
topologies, we connected the controller and the DHCP server
to one of the switches present in the topology. In the case of
a star topology, we connected the controller and the DHCP
server to the central switch connecting all the other switches
in the star network. The number of switches connecting the
central switch is varied and the effect on the bootstrapping
time is shown in the results. In the case of mesh topologies,
we used topologies that were developed within the COST 266
action project [6]. In this project, a basic reference topology
(BT topology) and variations of the BT topology, suited for a

pan-European network, were designed. The variations of the
BT topology were Core Topology (CT), Large Topology (LT),
Ring Topology (RT) and Triangular Topology (TT). These
were obtained by varying the total number of nodes and the
degree of meshedness. The CT topology and the LT topology
differ with respect to the number of nodes. The BT consists of
28 nodes, the CT consists of 16 nodes and the LT consists of
37 nodes. The other derived topologies contained the same
number of nodes as the BT, but the difference lies in the
degree of meshedness. The maximum degree of nodes in these
topologies is 7. We performed the bootstrapping experiments
on all these topologies.

There are many extensions of the OpenFlow protocol. Some
of the extensions have been released publicly in the form of
versions. The OpenFlow 1.0 version that is developed by Stan-
ford is called as the reference switch [7]. This reference switch
contains the DHCP client software in its implementation.
However, this software is abandoned in the higher versions.
We integrated this DHCP client software in the OpenFlow
1.1 version (developed by Ericsson), and used this for our
implementation. In addition, many OpenFlow controllers are
also available for controlling OpenFlow networks. These are
NOX, Beacon, Onix, Floodlight, Helios and Maestro. We im-
plemented our bootstrapping approach in the NOX controller
(developed by Ericsson [8]) and used this in our emulation.

In our emulation, the DHCP server is enabled with two op-
tions: ping checked enabled and ping check disabled. The ping
check may be required to verify address availability before
offering it to a client. We tested our bootstrapping approach
with both the options and calculated the bootstrapping time. In
the case of ping check enabled, the DHCP server pings an IP
address before offering it to the DHCP client. In the case the
DHCP server does not receive a reply of a ping until a certain
time (1 second in our case), it offers the IP address to the client.
In the case of ping check disabled, the DHCP server offers an
IP address to the DHCP client without pinging the IP address.
For the transmission of the DHCP Discover message, we kept
the retransmission time of the DHCP Discover messages (the
time if a DHCP client does not receive a reply of the DHCP
Discovery message) equals to 1 second. The DHCP client in
an OpenFlow switch changes this value to a random interval
between 0.90 to 1.10 second.

We now show the results of the experiments performed on

80

100

120

140

160

B
o
o
ts

tr
ap

p
in

g
 t

im
e

o
f

sw
it

ch
es

(s
ec

o
n
d
s)

Linear topology with ping check disabled

Linear topology with ping check enabled

Ring topology with ping check disabled

Ring topology with ping check enabled

0

20

40

60

0 10 20 30 40 50

B
o
o
ts

tr
ap

p
in

g
 t

im
e

o
f

(s
ec

o
n
d
s)

Shortest distance from the controller (no. of hops)

Fig. 4. Bootstrapping Experiment on linear and ring topologies

different topologies. Fig. 4 shows the results of the experiments
performed on linear and ring topologies. The results show
a linear relationship between the bootstrapping time and the
shortest distance (number of hops) from the controller. In the
case of ping check enabled, the bootstrapping time of switches

is delayed by an additional time. This is because the DHCP
server waited 1 second before offering an IP address to each
of the switches. In the case of the linear topology of 50
nodes, bootstrapping of all the switches took approximately 40
seconds with the ping check disabled option and 91 seconds
with the ping check enabled option. In the case of the ring
topology of 50 nodes, bootstrapping took approximately 23
seconds with the ping check disabled option and 50 seconds
with the ping check enabled option.

8

10

12

14

16

T
o
ta

l
b
o
o
ts

tr
ap

p
in

g
 t

im
e

(s
ec

o
n
d
s)

ping check disabled

ping check enabled

0

2

4

6

0 10 20 30 40 50 60

T
o
ta

l
b
o
o
ts

tr
ap

p
in

g
 t

im
e

(s
ec

o
n
d
s)

Degree of the central switch

Fig. 5. Bootstrapping experiment on star topologies

Fig. 5 shows the results of the experiments performed on
the star topologies. The results show that until the degree of
the central switch is 30, bootstrapping took approximately 1
second in the case of the ping check disabled option and 2
seconds in the case of the ping check enabled option. After this,
the bootstrapping time increases with the increased degree of
the central switch. This is because as the degree of the central
switch increases, more messages will be buffered in the packet-
in buffer of the central switch. A message remains in the buffer
until the controller responds on a forwarding decision of the
message. This led to overflow of the packet-in buffer, and
resulted into drop of some of the messages. In the case a DHCP
Discover message drops, bootstrapping in our emulation will
take additional 1 second to retransmit the next DHCP Discover
message. In the case a TCP syn message drops, the TCP stack
will take an additional time to retransmit the TCP syn message.
This additional time increases exponentially in TCP with the
number of Syn messages dropped [9].

8

10

12

14

16

B
o
o
ts

tr
ap

p
in

g
 T

im
e

o
f

 s
w

it
ch

es

(s
ec

o
n
d
s)

Minumum Average Maximum

Miniumum Average Maximum

Ping check disabled:

Ping check enabled:

0

2

4

6

8

0 1 2 3 4 5 6 7

B
o
o
ts

tr
ap

p
in

g
 T

im
e

o
f

 s
w

it
ch

es

(s
ec

o
n
d
s)

Shortest distance from the controller (no. of hops)

Fig. 6. Bootstrapping experiment on mesh topologies

Fig. 6 shows the results of the experiment performed on
the mesh topologies developed in the COST 266 action project.
The figure shows the minimum, the average, and the maximum
time of bootstrapping. In all the emulated mesh topologies,
we found a linear relationship between the bootstrapping time
and the minimum distance from the controller. With the ping

disable option, our method took approximately 6 seconds, and
with the ping enable option, our method took approximately
12 seconds to bootstrap the emulated mesh networks.

IV. CONCLUSION

In this paper, we have proposed a method that facilitates
automatic bootstrapping in an in-band case of OpenFlow
networks. We have performed extensive experiments on dif-
ferent types of topologies, and have shown that the proposed
method allows automatic bootstrapping in a minimal time. In
our emulation, bootstrapping took a maximum of 12 seconds
to discover the OpenFlow network created by well known
pan-European topologies developed in the COST 266 action
project.

In this paper, bootstrapping of OpenFlow networks is
performed by using existing auto-configuration mechanisms
such as DHCP. However, with the recent addition of OF-
config to the OpenFlow architecture, there is an additional
interface available, dedicated for configuration tasks. OF-
config is based on NETCONF (network configuration protocol)
[10], a transactional protocol that uses remote procedure calls
on top of a secure transport channel to manage configurations
on remote devices. Hence, in future work we will use OF-
config, and will compare it with DHCP for auto-configuration
of OpenFlow switches.

There are two topics that can enhance the work performed in
this paper: (1) consideration of multi-controller networks, and
(2) failure recovery in the in-band case of OpenFlow networks.
In [11], [12], we performed a failure recovery experiment for
the in-band case of an OpenFlow network, and achieved failure
recovery within a reasonable amount time.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the EU FP7 programme under grant agreement no

258457 (SPARC) and no 258365 (OFELIA).

REFERENCES

[1] N. McKeown et al., Openflow: Enabling innovation in campus networks,
ACM Computer Communication Review, 2008.

[2] OF-Config: https://www.opennetworking.org/standards/of-config
[3] S. Alexander et al., DHCP Options and BOOTP Vendor Extensions, RFC

2132, 1997.
[4] IEEE standard 802.1AB: http://standards.ieee.org/getieee802/download/802.1AB-

2009.pdf
[5] OpenFlow Switch Specification: Version 1.0.0 (Wire Protocol 0x01):

www.openflow.org/documents/openflow-spec-v1.0.0.pdf
[6] S. D. Maesschalck et al., Pan-European Optical Transport Networks: An

Availability-based Comparison, Photonic Network Communications, Vol.
5, Issue 3, pp. 203-225, 2003.

[7] OpenFlow reference switch implementation: http://www.openflow.org/
[8] Ericsson OpenFlow and NOX Controller Software:

https://github.com/TrafficLab.
[9] V. Paxson et al., ”Computing TCP’s Retransmission Timer”, RFC 2988,

2000.
[10] R. Enns et al., Network Configuration Protocol, RFC 6241, 2011.
[11] S. Sharma et al., Fast failure recovery for in-band OpenFlow networks,

DRCN, 2013.
[12] S. Sharma et al., A demonstration of automatic bootstrapping of re-

silient OpenFlow networks, IFIP/IEEE Integrated Network Management
Symposium (IM), 2013.

