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Abstract. Many recently proposed algorithms in multi-label classifica-
tion are believed to outperform their baseline competitors by exploiting
structure and dependencies in the label space. However, most of these
algorithms are presented in a purely application-driven manner, despite
being intuitively appealing and showing strong performance in empirical
studies. In this article we study one of these methods in detail, namely
classifier chains, thereby helping to gain a better understanding of this
approach. As a main result, we clarify that the original chaining method
intends to predict the joint mode of the conditional distribution of label
vectors in an approximate manner. Since exact inference is known to be
intractable in general, this is of course a reasonable strategy. However,
as a result of a theoretical regret analysis, we conclude that the exist-
ing greedy algorithm can perform quite poorly in terms of subset 0/1
loss. Therefore, we present an enhanced inference procedure for which
the worst-case regret can be upper-bounded far more tightly. Finally, we
discuss connections with related frameworks, such as conditional random
fields and structured support vector machines, and we present experi-
mental results confirming the validity of our theoretical findings.

1 Introduction

Multi-label classification (MLC) is a relatively new but rapidly expanding sub-
field of machine learning, which differs from conventional binary classification
insofar as multiple binary labels have to be predicted simultaneously. This tran-
sition from predicting a single label to predicting multiple labels raises a number
of computational and statistical challenges, such as the need for modeling statis-
tical dependencies between labels and optimizing a wide range of loss functions
in a potentially high-dimensional label space. However, it often happens that
precise knowledge of structure and dependencies in the label space cannot be
provided in MLC problems, in contrast to many other applications of structured
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output prediction, so MLC algorithms should detect this information automati-
cally.

Most of the multi-label classification (MLC) methods proposed in recent
years intend to exploit, in one way or the other, dependencies between the class
labels. Comparing to simple binary relevance (BR) learning as a baseline, any
gain in performance is normally explained by the fact that BR is ignoring such
dependencies. Without questioning the correctness of such studies, one has to
admit that a blanket explanation of that kind is hiding many subtle details,
and indeed, the underlying mechanisms and true reasons for the improvements
reported in experimental studies are rarely laid bare.

For example, the recently introduced classifier chains (CC) [1] has not been
thoroughly analyzed in a theoretical way, despite being intuitively appealing and
showing strong performance in empirical studies. In this paper, we will analyze
this chaining method and its probabilistic variant more deeply, particularly in
terms of loss minimization and the related issue of modelling label dependencies.
From a probabilistic perspective, it is clear that different properties of the joint
conditional distribution over labels are needed for optimizing the different loss
functions that are currently used in MLC, so one cannot expect that a single
multi-label classifier outperforms competing algorithms simultaneously for all
possible loss functions [2]. From this viewpoint, we will show that the original
CC algorithm is likely to outperform BR in terms of subset 0/1 loss, while BR
is likely to outperform CC in terms of Hamming loss.

Conversely, different loss functions can be optimized with probabilistic clas-
sifier chains (PCC), the probabilistic variant of chaining introduced in [3]. The
output of the classifier chain corresponds in the PCC method to an estimate of
the joint probability distribution, for which an inference procedure is needed in
order to obtain the right prediction for a given loss. The PCC method, how-
ever, has been only analyzed with an exhaustive inference algorithm that is
intractable for problems with more than 12-15 labels. Therefore, an enhanced
approximate inference algorithm is introduced, for which substantially tighter
worst-case regret bounds are derived as a function of the running time of the
algorithm (assuming that conditional probabilities can be estimated perfectly).
In the experiments, we show that the exploitation of label dependencies by joint
mode estimation leads to a clear improvement over BR in terms of subset 0/1
loss. For the Hamming loss, we show that it suffices to estimate the marginal
modes.

2 Joint Mode versus Marginal Mode Prediction

Let X denote an instance space, and let L = {λ1, λ2, . . . , λm} be a finite set
of class labels. We assume that an instance x ∈ X is (non-deterministically)
associated with a subset of labels L ∈ 2L; this subset is often called the set of
relevant labels, while the complement L\L is considered as irrelevant for x. We
identify a set L of relevant labels with a binary vector y = (y1, y2, . . . , ym), in
which yi = 1⇔ λi ∈ L. By Y = {0, 1}m we denote the set of possible labelings.
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We assume observations to be generated independently and identically ac-
cording to a probability distribution P(X,Y) on X × Y, i.e., an observation
y = (y1, . . . , ym) is the realization of a corresponding random vector Y =
(Y1, Y2, . . . , Ym). We denote by P(y |x) the conditional distribution of Y = y
given X = x, and by P(yi = b|x) the corresponding marginal distribution of Yi:

P(yi = b|x) =
∑

y∈Y:yi=b

P(y|x)

Let us denote a multi-label classifier h as an X → Y mapping that returns
a vector h(x) = (h1(x), h2(x), . . . , hm(x)) for a given instance x ∈ X . Given
training data in the form of a finite set of observations (x,y) ∈ X × Y, drawn
independently from P(X,Y), the goal in multi-label classification is to learn
a classifier h : X → Y that generalizes well beyond these observations in the
sense of minimizing the risk with respect to a specific loss function. The risk of
a classifier h is defined as the expected loss over the joint distribution P(X,Y):

RL(h) = EXYL(Y,h(X)), (1)

where L(·) is a loss function on multi-label predictions. The so-called risk-
minimizing model h∗ is determined in a pointwise way by the risk minimizer

h∗(x) = arg min
h

EY|XL(Y,h(x)) = arg min
h

∑
y∈Y

P(y |x)L(y,h(x)). (2)

As we are dealing with a multivariate conditional probability distribution
over the labels, two of its properties are always of interest: the joint and the
marginal mode.

Proposition 1. [3] Predicting the joint mode leads to a model of the following
form:

h∗(x) = arg max
y∈Y

P(y |x) , (3)

corresponding to the risk minimizer (2) of the so-called subset 0/1 loss, which
is formally defined as follows:4

Ls(y,h(x)) = Jy 6= h(x)K . (4)

Predicting the marginal (conditional) modes, in turn, leads to the model

h∗i (x) = arg max
b∈{0,1}

P(yi = b |x) (5)

corresponding to the risk minimizer (2) for the Hamming loss, defined as the
fraction of labels whose relevance is incorrectly predicted:

LH(y,h(x)) =
1
m

m∑
i=1

Jyi 6= hi(x)K . (6)

4 For a predicate P , the expression JP K evaluates to 1 if P is true and to 0 if P is
false.
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Predicting the joint (conditional) mode can be considered as a core opera-
tion in many structured output prediction methods such as conditional random
fields [4]. Modeling the joint conditional distribution and its joint mode involves
exploiting conditional dependence between labels, unlike modeling the marginal
modes, where the gain by exploiting the conditional dependence, if any, is rather
small. In order to improve the performance in estimating the marginal distribu-
tions, the methods should rather exploit the marginal dependence, as explained
for example in [5].

3 Probabilistic Classifier Chains

The Probabilistic Classifier Chains (PCC) method has been introduced in [3] in
an attempt to provide a probabilistic interpretation for the previously published
Classifier Chains (CC) method [1]. The idea underlying PCC is to repeatedly
apply the product rule of probability to the joint distribution of the labels Y =
(Y1, . . . , Ym):

P(y |x) =
m∏
k=1

P(yk|x, y1, . . . , yk−1) (7)

In other words, PCC represents conditional label dependencies as a fully con-
nected graph. From a theoretical point of view, the order of labels does not play
any role, and (7) holds for any permutation of Y = (Y1, . . . , Ym).

Learning a classifier chain can be considered as a very simple procedure.
According to (7), we decompose the joint distribution to a sequence of marginal
distributions that depend on a subset of the labels. These marginal distributions
can be learned by m functions fi(·) on an augmented input space X ×{0, 1}i−1,
taking y1, . . . , yk−1 as additional input attributes:

fk : X × {0, 1}k−1 → [0, 1]
(x, y1, . . . , yk−1) 7→ P(yk = 1 |x, y1, . . . , yk−1)

We assume that the function fk(·) can be interpreted as a probabilistic classifier
whose prediction is the probability that yi = 1, or at least a reasonable ap-
proximation thereof. Thus, for any y = (y1, y2, . . . , ym), its probability can be
estimated by

P̂(y|x) =
m∏
k=1

fk(x, y1, . . . , yk−1) . (8)

The problem is then to find the risk minimizer for a given loss function over
the estimated joint conditional distribution. This process is often referred to as
inference, and it will be thoroughly analyzed in the next section. To this end,
it is convenient to represent the estimated joint conditional distribution as a
probability tree. We define the probability tree as a structure (V,E,Π) with
V the set of nodes, E the set of edges and Π : E → [0, 1] a function that
assigns positive weights to edges. Moreover, let us denote a node at depth k as
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va = (a1, ..., ak) ∈ {0, 1}k, then the weight of the edge between such a node and
its ancestor pa(v) = (a1, ..., ak−1) at depth k − 1 is given by

Π(va) = P(Yk = ak | x, y1 = a1, ..., yk−1 = ak−1) .

As such, depth k of the probability tree represents the decision that is taken in
the k-th classifier of the chain. The root of the tree vR = ∅ corresponds to depth
k = 0 with Π(vR) = 1.

4 Inference in Probabilistic Classifiers Chains

Originally, two approaches have been proposed for inferring a prediction from
an estimated chain: an approach based on greedy search, being the integral part
of the original CC method [1], and an approach based on exhaustive search, as
considered in the PCC method [3].

4.1 Inference by Exhaustive Search

In inference by exhaustive search one assumes that an optimal prediction can
be computed explicitly via (2), given an estimate of P(y |x) for all y and a loss
function L(·). Nonetheless, such an approach is extremely costly, as it results in
taking the sum over an exponential (2m) number of label combinations. More-
over, the brute-force search for the optimal solution would also require to check
all possible combinations of labels. For some loss functions, like subset 0/1 and
Hamming loss, one iteration through the label combinations suffices to compute
the optimal solutions, however, this still limits the applicability of the method
to datasets with a small to moderate number of labels.

From this point of view, PCC can be treated as a general method for multi-
label classification. However, approximate algorithms might be needed for loss
functions for which exact inference becomes intractable. Due to lack of space,
we will not offer such a discussion in this paper. In contrast, we will focuss on
the subset 0/1 loss, for which an enhanced approximate algorithm is developed.

4.2 Inference by Greedy Search

Inference by greedy search, for which the pseudo code is given in Algorithm 1, has
been introduced as an integral part of the CC method. Briefly summarized, this
inference algorithm just follows a single path from the root to one specific leaf.
For a new instance x to be classified, the model f1 predicts ŷ1, i.e., the relevance
of λ1 for x, as usual. Then, f2 predicts the relevance of λ2, taking x plus the
predicted value ŷ1 ∈ {0, 1} as an input. Proceeding in this way, fi predicts ŷi
using ŷ1, . . . , ŷi−1 as additional input information. The main advantages of this
approach are (a) its low cost and (b) the possibility to use non-probabilistic
classifiers, as one only needs to know whether a given label is relevant or not to
take a greedy decision in following a path from the root to a leaf. However, we
will show for two loss functions that the regret of such an approach can be large.
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Algorithm 1 Inference by Greedy Search
v ← the root of the probability tree
while v is not a leaf do

lc(v), rc(v)← left and right child of v
if Π(lc(v) ≥ Π(rc(v)) then
v ← lc(v)

else
v ← rc(v)

end if
end while
return v = (a1, ..., am) as the mode

The regret of a classifier h with respect to a loss function Lz is defined as
follows:

rLz (h) = RLz (h)−RLz (h∗z), (9)

where R is the risk given by (1), and h∗z is the Bayes-optimal classifier with
respect to the loss function Lz. In the following, we consider the regret with
respect to the Hamming loss, given by

rH(h) = EXYLH(Y,h(X))− EXYLH(Y,h∗H(X)),

and the subset 0/1 loss, given by

rs(h) = EXYLs(Y,h(X))− EXYLs(Y,h∗s(X)).

Since both loss functions are decomposable with respect to individual instances,
we analyze the expectation over Y for a given x. The following proposition
identifies the highest value of the regret for the greedy approach in terms of the
subset 0/1 loss and the Hamming loss (proof omitted due to lack of space).

Theorem 1. Under the assumption that a probabilistic classifier chain obtains
a perfect estimate of the conditional probability P(y|x), the following tight upper
bounds hold for the regret of the prediction hG(x) of the greedy approach:

sup
P

(EYLs(Y,hG(x))− EYLs(Y,h∗s(x))) = 2−1 − 2−m,

sup
P

(EYLH(Y,hG(x))− EYLH(Y,h∗H(x))) = 1− 2
m

m∑
i=1

2−i,

where the supremum is taken over all probability distributions on Y.

As we can see, the regret is quite high in both cases, suggesting that inference
by greedy search can yield a poor performance for both loss functions. Nev-
ertheless, we argue that this approach is still more appropriate for the subset
0/1 loss. When the number of labels increases, the regret converges to 0.5 for
the subset 0/1 loss, while it even converges to the maximum possible value of 1
for the Hamming loss. Hence, it is tempting to conclude that the greedy search
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procedure is indeed more suitable for estimating the joint than the marginal
mode, all the more since the subset 0/1 loss, in terms of its absolute value, is
even higher than the Hamming loss (which, for example, can already be reduced
to 1/2 by random guessing). Furthermore, one may wonder whether one can
find an optimal order of labels in the chain, for which the regret would decrease
to zero. Unfortunately, this is provably impossible (proof omitted due to space
restrictions). An interesting issue being a subject of our future work is to check
whether the maximal value of the regret becomes smaller if the order of the
labels would be changed or even optimized.

Nevertheless, let us remark that the risk minimizers of the Hamming loss
and the subset 0/1 loss coincide in many specific situations, like conditional
independence of labels or if the probability of the joint mode is greater than
or equal to 0.5 [2]. One can easily observe that the worst-case regret of the
greedy search algorithm is zero for both losses in these two situations. At the
same time, these facts may also explain why algorithms, despite not tailored
for specific losses, have been reported to obtain good results in many empirical
studies.

4.3 An ε-Approximate Algorithm

Since the regret of the greedy search procedure can be high, we propose in this
section a specific algorithm for which a much smaller upper bound on the regret
can be derived. From a graph-theoretic perspective, the algorithm computes the
shortest path between the root of the probability tree and a fictitious dummy
node that is connected to the leaves of the probability tree. Given the probability
tree structure that was introduced in the previous section, let us define the path
distance Π(va) between the root node vR = ∅ and any node va recursively, as a
product of edge weights:

Π(va) = Π(va)×Π(pa(va)) , (10)

where pa(v) denotes the parent of a given node v.
Using this notation, the pseudo code of our algorithm is summarized in Al-

gorithm 2. In a nutshell, the algorithm starts from the root of the probability
tree, which is the single element of an ordered list Q. In every iteration, the
top element of the list is popped and the children of the corresponding node
are visited. The path distance Π(v) to the root can be recursively computed for
these children, and they are added to the list if the path distance is bigger than
the threshold ε = 2−k with 1 ≤ k ≤ m. Basically, they are inserted in the list at
the appropriate position, so that the order imposed by Π(v) is respected.

The while loop of the algorithm stops in two situations: (1) when the element
popped from the list Q corresponds to a leaf of the probability tree or (2) when
the list Q is empty. The label combination corresponding to the leaf is then
returned in the former case, while inference by greedy search, as described above,
is applied to define a path from all non-survived nodes from the list K (i.e., nodes
for which none of their children has been added to Q) to a leaf with corresponding
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Algorithm 2 ε-Approximate Inference
ordered list Q← {vR} (contains root node initially)
ordered list K ← {} (non-survived parents)
define Π(vR) = 1
ε← 2−k with k ≤ m
while Q 6= ∅ do
v ← pop first element in Q
if v is a leaf then

delete all elements in K and break the while loop
end if
lc(v), rc(v)← left and right child of v
compute Π(lc(v)) and Π(rc(v)) recursively from Π(v) using Eq. (10)
if Π(lc(v)) ≥ ε then

insert lc(v) in list Q sorted according to Π(lc(v))
end if
if Π(rc(v)) ≥ ε then

insert rc(v) in list Q sorted according to Π(rc(v))
end if
if lc(v) and rc(v) are not inserted to the list then

insert v in list K sorted according to Π(v)
end if

end while
ε← 0
while K 6= ∅ do
v′ ← pop first element in K and apply Algorithm 1 downward on it
if Π(v′) ≥ ε then
v ← v′ and ε← Π(v′)

end if
end while
return v = (a1, ..., am) as the mode

prediction in the latter case. The following theorem states that in both cases the
regret of the prediction can be bounded as a function of the number of iterations
of the algorithm (proof omitted).

Theorem 2. Let k ≤ m. Under the assumption that a probabilistic classifier
chain obtains a perfect estimate of the conditional probability P(y|x), Algo-
rithm 2 needs less than O(m2k) iterations to find a prediction hε(x) with low
worst-case regret for subset 0/1 loss, i.e.

sup
P

(EYLs(Y,hε(x))− EYLs(Y,h∗s(x))) ≤ 2−k − 2−m .

Thus, the algorithm finds an upper bound on the regret as a function of the
running time of the algorithm. Consequently, the algorithm will always find the
mode of the distribution, if the probability mass of the mode is higher than the
upper bound on the regret. This is summarized in the following corollary.
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Corollary 1. Let k ≤ m and let P be a probability distribution for which the
joint mode has a probability mass bigger than 2−k, then Algorithm 2 needs less
than m2k iterations to find a prediction hε(x) that corresponds to this mode.

5 Related Methods

If logistic regression models are used as base classifiers in the chain, a strong
correspondence with conditional random fields can be established. This type of
methods defines a probabilistic model for a set of output variables conditioned
on a set of input variables in the following way:

Pw(y | x) =
1

Z(x,w)
e−wTΨ(x,y) ,

with w a vector of parameters, Ψ(x,y) a joint feature mapping on input and out-
put variables, and Z(x,w) =

∑
y∈{0,1}m e−wTΨ(x,y) a normalization constant.

Probabilistic classifier chains with logistic regression models as base classifiers
lead to the same representation with a specific choice for Ψ(x,y).5 Let us denote
by y′i = (2yi−1) ∈ {−1, 1}. By applying the logistic model to every base classifier
in the chain we obtain:

Pw(y | x) =
m∏
i=1

e−y
′
iw

Tφ(x,y′1,...,y
′
i−1)

e−y
′
iw

Tφ(x,y′1,...,y
′
i−1) + ey

′
iw

Tφ(x,y′1,...,y
′
i−1)

=
1

Z ′(x,w)
e−

∑m
i=1 y

′
iw

Tφ(x,y′1,...,y
′
i−1)

with wi the weight vector for the i-th classifier, φ a feature mapping and Z ′

different from Z. In the case of linear models, we end up with the following
model:

Pw(y | x) =
1

Z ′(x,w)
e−

∑m
i=1−y

′
i(

∑
j wjxj+

∑i−1
j=1 wjy

′
j)

So, the feature mapping Ψ(x,y) = (y′1x, . . . , y
′
mx, y

′
1y
′
2x, y

′
1y
′
3x, . . . , y

′
m−1y

′
mx)

models all pairwise dependencies between labels. Hence, one may expect very
similar results for the two approaches, but the fitted models will not necessarily
be identical. As a main benefit, our approach allows to solve m learning problems
independently during the training phase, without imposing any restrictions on
modeling label dependencies. Let us also remark that we need complex inference
algorithms for conditional random fields to solve MLC problems [4].

Similarly, a strong relationship might be claimed with structured support
vector machines, which only differ from conditional random fields in the loss
that is minimized, namely structured hinge loss instead of log-loss [6]. However,
similar needs for approximate inference of general loss functions arise in such a

5 We assume that the last element of x is always one (the bias term).
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Table 1. Basic statistics for the datasets, including training and test set sizes, number
of features and labels, and minimal, average, and maximal number of relevant labels.

data set # train inst. # test inst. # attr. # lab. min ave. max

scene 1211 1196 294 6 1 1.062 3
yeast 1500 917 103 14 1 4.228 11
tmc2007-500 21519 7077 500 22 1 2.226 10
medical 333 645 1449 45 1 1.255 3
enron 1123 579 1001 53 1 3.386 11
reuters (subset 1) 3000 3000 500 103 1 3.176 11
mediamill 30993 12914 120 101 0 4.363 18
emotions 391 202 72 6 1 1.813 3
synth1 471 5045 6000 6 1 2.045 6
synth2 1000 10000 40 10 1 1 1

context, as discussed thoroughly by [7] from a multi-label classification perspec-
tive. In general, efficient inference in the presence of many labels is required in
many MLC methods, including the label powerset classifier [8, 9] and Bayesian
networks [10]. All these methods suffer from the large complexity of the out-
put domain, and approximate inference algorithms are required for dealing with
real-world data.

6 Experimental Study

The experiments that we describe here intend to confirm our theoretical claims.
To this end, we follow a similar experimental setup as in [7], in which four bench-
mark and two synthetic datasets with known training and test parts have been
used. We extend this setup with four other datasets to emphasize the interesting
computational complexity properties of our approach for high-dimensional label
spaces. All eight real-world datasets were downloaded from the MULAN6 and
LibSVM7 multi-label dataset repositories and the two synthetic datasets were
generated using the description in [7].8 All the datasets are described in Table 2.

In the experiment we show that inference by greedy search is more appropri-
ate for estimating the joint mode, while substantial performance gains can be
obtained by applying our ε-approximate inference algorithm. Moreover, using
this strategy, we reach a computational cost that is more than fair for real-
world applications. As a result, we perform a comparison of the three variants of
PCC: 1) inference by greedy search for PCC, which resembles the ε-approximate
inference algorithm to PCC with ε = 0.5 (denoted PCC ε = 0.5), 2) the ε-
approximate inference algorithm with ε = 0.25 (PCC ε = 0.25), 3) the exact

6 http://mulan.sourceforge.net/datasets.html
7 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multi-label.html
8 The original training and test sets have not been published for the two synthetic

datasets. We do not describe these datasets here due to space limitations, and we
refer the reader to the original paper. To obtain more stable results, we report the
results as an average over 5 replications of these synthetic datasets.
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inference, meaning ε = 0 (PCC ε = 0.0). We also compare with a binary rel-
evance (BR) learner that serves as a baseline by training a classifier for each
label separately. It should perform well for the Hamming loss, while all the
variants of PCC should perform well for the subset 0/1 loss. As a base learner
we use a regularized logistic regression model. We apply an internal three-fold
cross-validation9 on training data for tuning the regularization parameter with
possible values {1000, 100, 1, 0.1, 0.01, 0.001}. This tuning is performed for each
base classifier by choosing the model with lowest empirical logistic loss in order
to obtain probability estimates that are as accurate as possible.

The results are given in Table 2. We can observe that our ε-approximate infer-
ence works as expected: with decreasing ε, the subset 0/1 loss usually decreases.
If this is not the case, then all the inference algorithms perform almost equally.
Interestingly, the exact algorithm PCC ε = 0.0 performs fast, being in the worse
case only 2 times slower than the greedy approach. We can also observe that the
greedy approach is appropriate for the subset 0/1 loss. It always obtained better
results than BR for this loss, while BR is almost always better for the Ham-
ming loss. In general, BR performs the best in estimating the marginal modes.
Interestingly, for datasets with many labels and for all the algorithms, almost
no difference in performance was observed on the Hamming loss, in contrast to
the subset 0/1 loss.

7 Discussion

Summarizing the above theoretical and empirical results, let us conclude that
our ε-approximate inference algorithm provides accurate and efficient estimates
of the joint mode. The greedy inference algorithm, which is an integral part of
the original CC algorithm, seems to be mainly tailored for subset 0/1 loss. This
was not clear from the original paper.

Due to lack of space, other important issues playing a key role in chaining
could not be discussed in detail. Probabilistic classifier chains can be easily ex-
tended for marginal mode estimation, leading to a general class of models that
exhibit many interesting properties, such as mechanisms for parallelization, pos-
sibilities for applying different base learners, strong connections with conditional
random fields and a predictive performance that is competitive with structured
SVMs. We also intend to investigate in future work the effect of ensembling mul-
tiple classifiers, as considered for CC and PCC in the original papers, and the
necessity for taking conditional dependence into account in marginal mode esti-
mation, which is often put forward as the main shortcoming of binary relevance
approaches.
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9 for large datasets (with number of training instances ≥ 10000) we used 66% split.



12 Dembczyński et al.

Table 2. Results on benchmark data sets, including training and test times, Hamming
and subset 0/1 losses on test sets with standard errors. In bold: the best results for a
given dataset and loss function. saa = same as above.

train Hamming subset 0/1 test train Hamming subset 0/1 test
time [s] loss loss time [s] time [s] loss loss time [s]

Scene Yeast

PCC ε=.5 420.641 0.115±.004 0.417±.014 0.375 232.249 0.213±.005 0.787±.014 0.172
PCC ε=.25 saa 0.107±.004 0.385±.014 0.375 saa 0.211±.006 0.764±.014 0.281
PCC ε=.0 saa 0.107±.004 0.385±.014 0.375 saa 0.210±.006 0.761±.014 0.344
BR 417.985 0.102±.003 0.509±.014 0.328 204.405 0.199±.005 0.842±.012 0.141

Mediamill Reuters

PCC ε=.5 37202.797 0.032±.000 0.885±.003 41.234 15227.574 0.018±.001 0.615±.009 19.438
PCC ε=.25 saa 0.032±.000 0.886±.003 53.454 saa 0.017±.001 0.601±.009 21.938
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