
Contact details

Bruno Da Silva, brunotiago.da.silva.gomes@ehb.be

Erasmushogeschool Brussel (IWT),

Nijverheidskaai 170, 1070 Brussels, Belgium

Acknowledgements

This research has been made possible thanks to a Tetra grant of the

Flanders agency for Innovation by Science and Technology

 Platform built

 GPU tool chain: standard CUDA/OpenCL

 FPGA tool chain: HLS using ROCCC

 Handwritten vs. C-to-VHDL compiler :

 Image erosion. Comparing handwritten and

optimized ROCCC execution gives 2.3

speedup due to smart buffer management

 Motion detection: ROCCC streaming parallel

and pipelining video input realizes 1.6 speedup

Results

Conclusions

 Combined HPC platform realized

 C-based tool chains available for both

platforms, FPGA and GPGPU

 High level synthesis cuts down

development time and increases

execution speed

 Future work: combine tool chains into

efficient multi-platform programming

environment

Putting 2 and 2 together:

1. Algorithm: define GPU, CPU and FPGA parts

2. C-program with GPU, CPU and FPGA function

calls

3. GPU code → GPU compiler

4. FPGA code → High Level Synthesis (HLS)

using a C to VHDL optimizing compiler

(ROCCC, AutoESL, ...)

5. FPGA design:

• bitmap file (FPGA configuration)

• communication support (FPGA board API)

6. Linker → executable with calls to GPU

framework and FPGA co-design

7. Load GPU, CPU code binaries and FPGA

configuration binary.

8. Execute program

Combined tool chain

Bruno Da Silva, An Braeken, Jan Cornelis, Erik H. D’Hollander,

Jan Lemeire, Abdellah Touhafi, Valentin Enescu
Erasmushogeschool Brussel (IWT Department)

Vrije Universiteit Brussel (ETRO Department), UGent (ELIS Department)

A Combined GPGPU-FPGA

High-Performance Desktop

References

1. Cornelis J., Lemeire J. Benchmarks Based on Anti-Parallel Pattern for the

Evaluation of GPUs, International Conference on Parallel Computing, Ghent, 2011

2.D’Hollander E. H., High-Performance Computing for Low-Power Systems,

Advanced HPC Systems workshop, Cetraro, 2011

• Computation of intensive interactive software

applications on R&D desktops require a versatile

hardware and software high-performance

environment.

• Present-day solutions focus on one technology,

e.g. GPUs, grids, multi-cores, clusters, …

• To leverage the power of different technologies,

a hybrid solution is presented, combining the

power of General-Purpose Graphical Processing

units (GPGPUs) and Field Programmable Gate

Arrays (FPGAs)

Abstract

Objectives

 Build a super GPU/FPGA desktop

 Develop a combined tool chain

 Explore industrial applications

Hybrid technologies

Figure 1. A PC is extended with GPU and FPGA accelerators to create a

high performance computing super desktop platform.

Presented at the 7th HiPEAC conference in Paris, January 23-25, 2012

GPGPUs:

 Massive SIMD parallelism

 Software tool chain

 Fast GPU-CPU communication

FPGAs:

 Massive fine-tuned parallelism and pipelining

 Optimizing C-to-VHDL compilers

 Algorithm in hardware

Research platform:

GPU: Tesla C2050 NVIDIA

FPGA: Pico Computing w/ 1-6 Virtex 6 FPGAs

Communication links:

PCI 2.0 express 16 lanes (GPU and Pico board)

Figure 3. A handwritten VHDL erosion algorithm is compared to the C-equivalent

program, compiled with the ROCCC C-to-VHDL compiler. The smart buffer and

other optimizations of ROCCC result in a 2.3 speedup on the same hardware.

0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00 160,00 180,00

Optimizing ROCCC

Handwritten
VHDL

MPixels/s = MB/s

Throughput (4 Pixels/Iteration)

Applications

Combining GPU and FPGA strengths:

 Image processing + Bio-informatics

 Face recognition + Security

 Image segmentation + HMMer DB searches

 Traffic analysis + Neural network control

Figure 2. An algorithm is converted into a C program with mixed code fragments

for the three platforms, CPU, GPU and FPGA. The fragments are sent to the cross

compilers. The FPGA code is synthesized into a bitmap file and combined with the

other binaries. The executable communicates with the GPUs and FPGAs using

API libraries.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55690388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:brunotiago.da.silva.gomes@ehb.be

