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 Platform built 

 GPU tool chain: standard CUDA/OpenCL 

 FPGA tool chain: HLS using ROCCC 

 Handwritten vs. C-to-VHDL compiler : 

 Image erosion. Comparing handwritten and 

optimized ROCCC execution gives 2.3 

speedup due to smart buffer management 

 

 

 

 

 

 

 

 Motion detection: ROCCC streaming parallel 

and pipelining video input realizes 1.6 speedup 

Results 

Conclusions 

 Combined HPC platform realized 

 C-based tool chains available for both 

platforms, FPGA and GPGPU 

 High level synthesis cuts down 

development time and increases 

execution speed 

 Future work: combine tool chains into 

efficient multi-platform programming 

environment 

 

Putting 2 and 2 together: 

1. Algorithm: define GPU, CPU and FPGA parts  

2. C-program with GPU, CPU and FPGA function 

calls 

3. GPU  code  →  GPU compiler 

4. FPGA code  → High Level Synthesis (HLS) 

using a C to VHDL optimizing compiler 

(ROCCC, AutoESL, ...) 

5. FPGA design:  

• bitmap file (FPGA configuration) 

• communication support (FPGA board API) 

6. Linker → executable with calls to GPU 

framework and FPGA co-design 

7. Load GPU, CPU code binaries and FPGA 

configuration binary. 

8. Execute program 

Combined tool chain 
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A Combined GPGPU-FPGA  

High-Performance Desktop 

References 

1. Cornelis J., Lemeire J. Benchmarks Based on Anti-Parallel Pattern for the 

Evaluation of GPUs, International Conference on Parallel Computing,  Ghent, 2011 

2.D’Hollander E. H., High-Performance Computing for Low-Power Systems, 

Advanced HPC Systems workshop, Cetraro, 2011 

• Computation of intensive interactive software 

applications on R&D desktops require a versatile 

hardware and software high-performance 

environment. 

• Present-day solutions focus on one technology, 

e.g. GPUs, grids, multi-cores, clusters, … 

• To leverage the power of different technologies, 

a hybrid solution is presented, combining the 

power of General-Purpose Graphical Processing 

units (GPGPUs) and Field Programmable Gate 

Arrays (FPGAs) 

Abstract 

Objectives 

 Build a super GPU/FPGA desktop 

 Develop a combined tool chain 

 Explore industrial applications 

Hybrid technologies 

Figure 1.  A PC is extended with GPU and FPGA accelerators to create a 

high performance computing super desktop platform. 

Presented at the 7th HiPEAC conference in Paris, January 23-25, 2012 

GPGPUs: 

 Massive SIMD parallelism 

 Software tool chain 

 Fast GPU-CPU communication 

FPGAs: 

 Massive fine-tuned parallelism and pipelining 

 Optimizing C-to-VHDL compilers 

 Algorithm in hardware 

Research platform: 

GPU: Tesla C2050 NVIDIA  

FPGA: Pico Computing  w/ 1-6 Virtex 6 FPGAs 

Communication links: 

PCI 2.0 express 16 lanes (GPU and Pico board) 

 

 

 

Figure 3. A handwritten VHDL erosion algorithm is compared to the C-equivalent  

program, compiled with the ROCCC  C-to-VHDL compiler. The smart buffer and 

other optimizations of ROCCC result in a 2.3 speedup on the same hardware. 
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Applications 

Combining GPU and FPGA strengths: 

 Image processing + Bio-informatics 

 Face recognition + Security 

 Image segmentation + HMMer DB searches 

 Traffic analysis + Neural network control 

 

Figure 2. An algorithm is converted into a C program with mixed code fragments 

for the three platforms, CPU, GPU and FPGA. The fragments are sent to the cross 

compilers. The FPGA code is synthesized into a bitmap file and combined with the 

other binaries. The executable communicates with the GPUs and FPGAs using 

API libraries. 
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