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Abstract—The interest in applying model-based predictive
control (MBPC) for power-electronic converters has grown
tremendously in the past years. This is due to the fact that MBPC
allows fast and accurate control of multiple controlled variables
for hybrid systems such as a power electronic converter and its
load. As MBPC is a family of possible controllers rather than
one single controller, several design choices are to be made when
implementing MBPC.
In this paper several conceptual possibilities are considered and
compared for two important parts of online Finite-Set MBPC
(FS-MBPC) algorithm: the cost function in the optimizations step
and the prediction model in the prediction step. These possibilities
are studied for two different applications of FS-MBPC for power
electronics. The cost function is studied in the application of
output current and capacitor voltage control of a 3-level flying-
capacitor inverter. The aspect of the prediction model is studied
for the stator flux and torque control of an induction machine
with a 2-level inverter. The two different applications illustrate
the versatility of FS-MBPC.
In the study concerning the cost function firstly the comparison
is made between quadratic and absolute value terms in the cost
function. Comparable results are obtained, but a lower resource
usage is obtained for the absolute value cost function. Secondly a
capacitor voltage tracking control is compared to a control where
the capacitor voltage may deviate without cost from the reference
up to a certain voltage. The relaxed cost function results in better
performance.
For the prediction model both a classical, parametric machine
model and a back propagation artificial neural network are
applied. Both are shown to be capable of a good control quality,
the neural network version is much more versatile but has a
higher computational burden. However, the number of neurons
in the hidden layer should be suffciently high.
All studied aspects were verified with experimental results and
these validate the simulation results. Even more important is the
fact that these experiments prove the feasibility of implementing
online finite-set MBPC in an FPGA for both applications.

Index Terms—MBPC, predictive control, FPGA implementa-
tion, flying-capacitor inverters, programmable digital hardware,
induction motor, torque control

I. INTRODUCTION

Model based predictive control (MBPC) provides a control

technique which is very suitable for the control of power

electronic converters and their load. The facts that MBPC

is a multivariable and discrete-time control is indeed very

advantageous in power electronics control. Furthermore spe-

cific control objectives can be defined with great flexibility.

These control objectives are achieved satisfactorily because

of the online optimization based on the prediction of the

possible future system states. Recently the interest in using

MBPC for power electronics control [1]–[5] has increased

tremendously, mainly because of the availability of faster and

cheaper processing power.

As the main strengths and the typical operation of a model

based predictive controller are determined by the prediction

and optimization, the possibilities for these parts of the algo-

rithm should be investigated. In this paper several choices for

the cost function and the prediction model are compared. For

the cost function, tracking control terms with quadratic and

absolute value norms are studied. In [6] a good range of weight

factors is established for the quadratic terms. In this paper the

influence of using absolute value norms on the established

good range, the control quality and hardware usage are dis-

cussed. Furthermore the effect of replacing the tracking control

term by a cost function with an tolerance band is studied.

For the prediction model the effect of replacing an analytical

parametric prediction model with a back-propagation artificial

neural network is considered.

The effects of the design choices are illustrated in two appli-

cations. The cost function variations are studied in the context

of output current and capacitor voltage control for a 3-level

flying capacitor inverter. The prediction model variations are

studied for the stator flux and torque control of an induction

machine.

The prediction of the future system states and the optimisation,

however, are computationally demanding. As the large com-

putational burden is considered to be the main disadvantage

of MBPC, the feasibility to implement the discussed model

based predictive controllers is important. The provided exper-

imental results not only validate the simulation results but also

illustrate the feasibility of implementing both applications in

an FPGA.

II. FINITE-SET MODEL BASED PREDICTIVE CONTROL

FOR POWER ELECTRONICS

The principles of FS-MBPC are explained and applied to

the control of power electronic converters in this section. In

this paper only discrete-time controllers operating with a fixed

update frequency fu are considered. Further on in the paper

two applications will be discussed. For both applications, two

main control objectives for the FS-MBPC exist. In the first

application, MBPC current control of a 3-level inverter, these

are the tracking of the reference current and the balancing

of the flying capacitor voltages. For the second application,

predictive torque control of induction machines, these control
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objectives are the tracking of the electromagnetic torque and

stator flux references. In both applications all control objec-

tives are achieved simultaneously by the multivariable control

scheme. To this end the inputs for the FS-MBPC algorithm

are the reference values and the measurements or estimations

of the controlled variables. The output of the algorithm is one

of the possible switch states of the converter (the finite set),

without using any modulation scheme. At every update instant

a new switch state can be applied and is maintained during

the entire update period. This results in a spread spectrum

switching frequency. The average switching frequency per

switch will certainly be lower than the update frequency, fu.

Online finite-set MBPC is a strategy to control selected

state variables by a real-time optimization of the future switch

states. For the optimization the future state variables need

to be calculated online for all possible future switch state

sequences. Three steps can be defined: estimation, prediction

and optimization step.

Estimation
At update instant k, the optimal switch state obtained in

the previous update period is applied and the measurements

of measurable state variables (e.g. phase currents ikx with

x = a, b, c) are obtained (throughout this paper superscript k
denotes the kth update period). At the end of this update period

the state variables will have changed due to the inverter switch

state applied. The values of the state variables at k+1 have to

be known to correctly predict the future state variables. To this

end the state variables are calculated at the end of the current

update period in the estimation step using the switch state

which is currently applied. This change is estimated based on

the measurements, the applied switch state Sk
ix and a system

model. The estimation step is very important to start the

following steps with correct values. However, although several

types of system models can be used, it is not a computationally

demanding step. This estimation step is needed to deal with

the calculation time delay in practical implementations as

discussed in [1]. The authors of [1] explicitly use the name

two-step-ahead prediction for a method using an estimation

step and a single prediction step. In [7] the estimation step is

called the initial state projection.

Prediction
The next step, the prediction step, covers future update pe-

riods where all possible future switch state sequences are

considered. The number of update periods considered in the

prediction step is denoted by N , the prediction horizon. From

k+1 on, the controller can use any possible output during each

update period to bring the controlled variables closer to their

desired values. The controller thus predicts the outcome of all

possible switch states over the entire prediction horizon, from

k + 1 to k + 1 + N , based on the estimations at k + 1.

In the prediction step a system model is needed. Often

this is the same model as in the estimation step is used,

although this is not necessary. As the prediction system model

has to be evaluated for all possible switch state sequences,

the computational complexity of the model and its accuracy

will directly determine the overall computational burden and

control quality.

Optimization
In the optimization step the most appropriate switch state

sequence is selected, of which the first switch state is applied at

the next update instant. Once the trajectories of the state vari-

ables for all possible control sequences have been calculated,

the optimal sequence can be selected by evaluation of a cost

function gk. The sequence resulting in the minimal cost is then

selected and the first switch state is applied by the controller

at time instant k+1. At this time k+1, the algorithm is started

again, resulting in a so-called receding horizon.

The cost function assigns a cost to a deviation of the

state variables from their desired values. Typically a cost

function with quadratic error terms is used, stemming from

the mathematical treatment for offline MBPC [4], [8], [9].

For online MBPC a large number of different cost functions

can be devised. Besides the freedom in choosing the form

of the cost terms, there is also a choice to be made for the

relative importance of each cost term. Typically each cost term

expressing the error of a certain controlled variable is assigned

a weight factor, the relative ratios of these weight factors allow

to focus the control effort on specific controlled variables.

Similarly a weight factor can be introduced to express the

relative importance of the error in update period k + i + 1
for i ∈ [1, N ]. This is not elaborated here (for a discussion,

see [6]), as this papers only discusses MBPC implementations

where N =1, i.e. a prediction horizon of one update period.

III. DESIGN CHOICES FOR THE OPTIMIZATION STEP:

COST FUNCTION DESIGN

As mentioned in the previous section, there are different

options for the design of the cost function used in the

optimization step. This is illustrated here with the specific

application of MBPC current and capacitor voltage control of

3-level inverter. Firstly the application is briefly introduced,

after which the results obtained with a quadratic-term cost

function are discussed. These results are compared with those

obtained with a cost function that uses absolute values of the

errors instead of the squared values. Finally a cost function

formulation that allows a certain deviation without cost is

discussed. All three types of cost functions are implemented

in an FPGA setup and experimentally verified.

A. Application: current and capacitor voltage control of 3-
level inverter

The topology of a three-phase, three-level flying capacitor

converter (FCC) is depicted in figure 1. It uses 2 pairs of

complementary controlled switches, (S1x, S1x) and (S2x, S2x)
per phase x, where x = a, b, c. These switches make it possible

to connect the flying capacitors C1x in series with the load

(an RL series connection). The series connection of the flying

capacitor produces an intermediate output voltage. Because

the flying capacitor is connected in series with the load, the

voltage of the capacitor changes as the load current flows

through the capacitor. The voltage of the flying capacitor C1 in

a three-level converter should always be kept at VDC/2. This

choice provides optimal voltage rating of the switches as this

only has to be VDC/2. Each phase has 4 (22) switch states of
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Figure 1: 3-level flying capacitor converter topology.

which 2 switch states produce the intermediate output voltage.

This makes it possible to perform a correction of the capacitor

voltage for every possible current direction and thus control the

capacitor voltage. The two control objectives for the model-

based predictive control (MBPC) with multilevel converters

are the tracking of the reference currents ikx with x = a, b, c
and the balancing of the flying capacitor voltages vk

cx. To

this end the inputs for the MBPC algorithm are the reference

values and the measurements of phase currents ikx and the

flying capacitor voltages vk
cx. The output of the algorithm is

one of the 64 ((22)3) possible switch states of the inverter.

A more complete discussion of the FS-MBPC for a 3-level

flying capacitor inverter can be found in [6]. In this paper we

only consider a prediction horizon of 1 update period. The

equations 1-5 form the estimation model (with i = 0) and

prediction model (with i = 1). The system parameters of the

studied system are given in table I.
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xn = (Sk+i

2x − 1
2
)VDC − (Sk+i

2x − Sk+i
1x )vk+i

cx (1)
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vk+i+1
an + vk+i+1

bn + vk+i+1
cn

3
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1
fu

R
L ik+i

x +
1 − e−

1
fu

R
L

R
vk+i+1

xo (4)

vk+i+1
cx = vk+i

cx +
1

2Cfu
(ik+i

x + ik+i+1
x )(Sk+i

2x − Sk+i
1x ) (5)

VDC 120V L 14.5 mH

fu 20 kHz R 4.5 Ω
C 110 μF

Table I: System parameters

Vbase 400 V

Ibase 10 A

ωbase 100π rad

Table II: Per unit base values

B. Tracking control with quadratic error term for the flying
capacitor voltages

In the online optimization a cost function has to be calcu-

lated for all of the 64 possible switch states to be applied from

k+1 to k+2. This can be done by using equation 6 as a phase
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Figure 2: The MSE values for ouput current (a), capacitor voltage
(b) and total error (c) as a function of the capacitor voltage weight

factor Wvc,sv , simulations

cost function, where the error between the reference values and

actual values is squared to give a quadratic error term. Each

error term is weighted in the sum, the relative importance of

the error of the capacitor voltage is expressed by Wvc,sv . The

weight factor Wvc,sv is a dimensionless parameter as we will

use per unit values for all currents and voltages (both in the

simulations and the FPGA implementation, base values are

given in table II).

gk
x = (ik+2

x,r − ik+2
x )2 + Wvc,sv(vk+2

c,r − vk+2
cx )2 (6)

The best switching action is found by minimising the total cost

function gk, which is the sum of all gk
x. The results obtained

with this cost function formulation for a reference current of

2A, 50Hz are shown in figure 2, the top figure shows the

MSE value of the current as a function of Wvc,sv , the middle

figure the MSE value of the capacitor voltage and the bottom

figure shows the total MSE. The MSE is a good measure to

evaluate the control quality as it expresses the average squared

deviation from the reference value. It is defined by:

MSE =

∑m
k=1(x

k
ref − xk)2

m
(7)

where the xk
ref and xk variables are dimensionless in the

per unit system. For very low Wvc,sv the current control has

priority and very good current control (low MSE) is obtained

at a cost of higher capacitor voltage deviations. The best

operating area is for an intermediate weight factor where

both current and capacitor voltage are well controlled. For

high Wvc,sv the current control is neglected to achieve good

capacitor voltage control. The existence of a good range for

the weight factor is important as the selection of the weight

factor is still an unresolved issue in the literature. This analysis

is performed more extensively in [6] where the MSE-method

is discussed to analyse several other design choices not treated

in this paper. These include the model simplification proposed

in [2] and larger prediction horizons N > 1. Furthermore the
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Figure 3: Comparison of the MSE values for ouput current (top),
capacitor voltage (middle) and total error (bottom) for the quadratic

and absolute value cost functions where Wvc,sv = W 2
vc,av ,

simulations

sensitivity of the good range of weight factors to the current

amplitude is shown to be very low.

C. Tracking control with absolute value error term for the
flying capacitor voltages

The quadratic cost terms as discussed before clearly al-

low good control quality. However, the calculation of these

terms demands considerable FPGA resources. With an update

frequency of 20kHz and an acceptable control, the predicted

errors of the controlled variables at k + 2 are small. Squaring

these small per-unit values in a fixed-point format demands

large data types to retain enough precision for the optimization,

this results in a higher usage of FPGA slices and embedded

multipliers than in the case of a cost function using absolute

values of the error terms:

gk
x =

∣∣ik+2
x,r − ik+2

x

∣∣ + Wvc,av

∣∣vk+2
c,r − vk+2

cx

∣∣ (8)

In [8] different types of norms for the cost function terms are

discussed. However, general observations on the cost function

design for common MBPC schemes as Generalized Predictive

Control (GPC) do not always hold for FS-MBPC with N = 1
as steady state is never achieved. In [1] different cost function

definitions are presented and it is stated (but not shown) that

with small update periods the influence is not important. In

order to consider using absolute value cost functions to reduce

the FPGA utilization, the control quality and the range of good

weight factors have to be investigated. In figure 3 the control

quality is again studied by the MSE-values of the controlled

variables and compares the obtained quality of a quadratic and

absolute-value cost function. On the horizontal axis Wvc,sv

(black axis and curve) and Wvc,av (grey axis and curve) are

shown. Clearly the control quality is very comparable and in

the area of good simultaneous control it is identical if a scaling

W 2
vc,av = Wvc,sv is chosen. This can be understood easily by

using the notations Δi = ik+2
r − ik+2

x and Δvc = vk+2
c,r − vk+2

cx
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Figure 4: Graphical illustration of the cost for the capacitor voltage
deviation

to rewrite the equations 6-8

|Δi| + Wvc,av|Δvc| (9)

Δi2 + W 2
vc,avΔv2

c + 2ΔiΔvcWvc,av (10)

As the only difference is the term containing ΔiΔvc, which is

small in the area of good simultaneous control, the expression

W 2
vc,av = Wvc,sv (11)

holds in the area of interest. This means that the weight factor

selection for both cost functions is equally straightforward.

Furthermore it shows that the absolute-value based cost func-

tion can be used.

D. Allowed deviation control for the flying capacitor voltages

Two cost function formulations have been studied that

achieve a very good tracking of the capacitor voltage. How-

ever, perfect tracking of the capacitor voltages often is not

required and sometimes undesirable (for high weight factors

the controller neglects the current control). In most cases

the capacitor voltage only needs to be in the vicinity of the

reference VDC/2 to respect the voltage rating of the switches,

but a certain deviation can be allowed. As such the following

cost function is proposed

gk
x =

⎧⎨
⎩

Δi2 0 ≤ |Δvc| ≤ Vt

Δi2 +Wvc(|Δvc| − Vt)2 Vt ≤ |Δvc| ≤ Vl

∞ |Δvc| > Vl

(12)

A graphical interpretation of the capacitor voltage cost term is

shown in figure 4. Deviations of the capacitor voltage of less

than Vt remain within the tolerance band and have no cost. For

deviations that are larger, but remain below the safety voltage

limit Vl, a quadratic cost term is calculated that expresses the

deviation from the allowed value |Δvc| − Vt. If the predicted

capacitor voltage deviation is larger than Vl an infinite cost

insures that the inverter will not operate in the unsafe area.

In figure 5 the proper operation of the proposed cost

function is shown for a fixed threshold Vt = 3.5V and

Vl = 7.5V with three values of the weight factor. Clearly

the capacitor voltage approaches the safety limit only for low

weight factors but never crosses the limit. For the low cost

the capacitor voltage deviation often is between Vt and Vl.

For high Wvc even stays within the tolerance band and never

approaches the safety limit.
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absolute value cost functions where Wvc,sv = W 2
vc,av

E. Experimental results

The experimental setup is a 3-level flying capacitor con-

verter constructed from in-house, half-bridge power electronic

building blocks (PEBBs). The FC converter is controlled with

an Xilinx VirtexII-Pro FPGA (XUPV2P-30), clocked at 100

MHz and an update period of 20 kHz. More details of this

setup can be found in [6]. The three different options for

the cost function presented here, were implemented in the

FPGA. In figure 6 the comparison between the quadratic and

absolute-value cost functions is made. The results validate the

conclusion that both cost functions perform well in the area

of good weight factors. In the experiments the absolute-value

cost function performs better than the quadratic cost function.

In figure 7 the measured capacitor voltages validate the

proper operation with the cost function defined by equation

12. The results are almost the same as those in simulation,

but due to measurement noise and parameter mismatch the
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Figure 8: 2-level inverter topology and induction machine load.

voltage deviations are slightly larger. As a result the capacitor

voltage can cross the safety limit for low Wvc and crosses

more often out of the tolerance band. As a result Wvc should

be selected higher than in the simulations. The result with

Wvc = 100 is very satisfactory.

IV. DESIGN CHOICES FOR THE PREDICTION STEP:

MODEL TYPE

In the previous section the possibilities for the formulation

of the cost function in the optimization phase have been

explored. The computational effort and the accuracy for the

predictions on which the optimizations are performed, are

also important aspects of an MBPC implementation. As these

aspects are directly determined by the prediction model that

is used, two possible prediction models are discussed here. In

this section the application is a predictive torque control of

induction machines. Again the simulation results are verified

with experimental results.

A. Application: flux and torque control for induction motor

Predictive flux and torque control is related to direct torque

control (DTC) of induction motors. As in DTC the stator flux

and motor torque are the controlled variables and the inverter

switch state is selected directly to control these variables.

Unlike in DTC the effect of each possible switch state is cal-

culated and evaluated to obtain the optimal switch sequence.



more information on predictive torque and flux control can be

found in the literature [3], [10]. In this application a 2-level

inverter is used as shown in figure 8. For a 2-level inverter

only 8 switch states can be applied.

The prediction horizon again is set to 1 update period but a

two-step-ahead FS-MBPC is used (including estimation step

for the time delay and prediction step). For the optimization

step a quadratic cost function with stator flux error and torque

error terms are used with an equal weighing of the per unit

error terms. The parameters of the induction machine and

inverter can be found in table III.

Rs = 1.26Ω Rr = 0.75Ω
Lm = 0.292H Lr = Ls = 0.304H
Pnom = 4 kW Nnom = 2900 rpm

VDC=560V fu = 1
Tu

= 20 kHz

Table III: System parameters of induction machine and inverter

B. Analytical machine model

In most MBPC implementations of induction motor torque

control an analytical machine model, using the machine pa-

rameters, is utilized as a prediction model. Several formula-

tions of the induction machine model exist, depending on the

chosen reference frame and state variables. In equation 13 a

prediction model is given with the stator flux (Ψsα, Ψsβ) and

stator current (Isα, Isβ) components in the stationary reference

frame as state variables.

The stator currents (Isα, Isβ) and the motor speed ω are

measured. As the pure integration of the back EMF to obtain

the stator flux is unstable, the stator flux components Ψsα, Ψsβ

are estimated with a low-pass-filter (corrected for phase and

amplitude errors). From the stator flux components the stator

flux magnitude |Ψ̂s| and torque T are calculated. The obtained

stator flux and torque control are shown in figure 10, the

reference for the stator flux is set to the nominal value

|Ψs|nom = 1Wb and the torque setpoint varies stepwise to

random values between +Tnom and −Tnom. In this way the

entire operating region (both in torque and speed) of the

a b

Figure 9: (a) Single neuron (b) Interconnected neurons form ANN

motor is covered. In figure 10 clearly both controlled variables

remain close to the references over the entire simulation range.

C. Neural network machine model

The prediction of the future stator flux and torque values is

based on the prediction of the future stator flux and current

components. The prediction of these components constitutes

a mapping from the machine state and possible stator volt-

ages to Ψsα, Ψsβ , Isα, Isβ . Back-propagation artificial neural

networks (ANN) can be trained to perform such mappings,

a thorough description of ANNs can be found in [11]. Here

a back-propagation ANN is proposed as a prediction model

for the calculation of the state variables [Ψsα, Ψsβ , Isα, Isβ ]
instead of an analytical prediction model.

An ANN consists of interconnected neurons, as shown in fig-

ure 9b, in three layers: the input layer, hidden layer and output

layer. Each neuron consists of the weighted sum of its inputs

and a bias value, together with an activation function, as shown

in figure 9a. The ANN is trained by the back propagation

method and as such can model any machine. By performing

an online back-propagation the ANN could be made adaptive

to respond to changes in the controlled system. This offers

some advantages over adaptive implementations of analytical
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ΔÎsα

Tu
= 1

σLs
(−Rr

Ls

Lr
Isα − ωσLsIsβ + Rr

Lr
Ψsα + ωΨsβ + ΔΨ̂sα

Tu
)

ΔÎsβ
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Ψ̂k+1
sα = Ψk

sα + ΔΨ̂sα

Ψ̂k+1
sβ = Ψk

sβ + ΔΨ̂sβ

Îk+1
sα = Ik

sα + ΔÎsα

Îk+1
sβ = Ik

sβ + ΔÎsβ

|Ψ̂s|k+1 =

√(
Ψ̂k+1

sα

)2

+
(
Ψ̂k+1

sβ

)2

T̂ k+1 = 3
2Np(Ψ̂k+1

sα Îk+1
sβ − Ψ̂k+1

sβ Îk+1
sα )

(13)



models as any system change is correctly correctly modelled

by the ANN and not only those captured by the parameters.

The plasticity of the network to model any machine and non-

linearity is the most interesting feature of using ANNs as

prediction models.

The ANNs used here have tan-sigmoid (tanh) activation

functions for all neurons. The ANNs were constructed and

trained using the Neural Network Toolbox from Matlab. The

network has 7 inputs [Ψsα, Ψsβ , Isα, Isβ , ω, Vs,α, Vs,β ] and

1 output (one of the flux or current components). For the

hidden layer different numbers of neurons were used. Using

simulations the capability of the ANN to identify the induction

machine was evaluated for all of these situations.

If a large number of neurons in the hidden layer is chosen the

predictions of the ANN can be as accurate as the analytical

prediction model, simulations have shown that 15 neurons in

the hidden layer are more than sufficient for both the flux

prediction ANN and the current prediction ANN. To reduce

the computational effort a lower number can be selected. For

1 and 2 neurons in the hidden layer for the flux prediction

ANN and the current prediction ANN respectively, acceptable

predictions are obtained and control quality is not much

reduced. The results obtained with these ANNs is shown in

figure 11. Again the stator flux and torque remain close to

the reference values. Some ondulation of the torque trajectory

is noticeable, this results from the limited capabilities of the

small (1 and 2 hidden neurons respectively) ANN to identify

the machine.

D. Experimental results

Both prediction models were implemented on an experi-

mental FPGA-based setup (VDC = 150 V, fu = 12 kHz,

other parameters as in table III). For the tanh activation

functions a piece-wise linear approximation was used, the

implemented ANN was trained in simulation. Figures 12 and

13 show the estimated stator flux and estimated torque for the

experimental FS-MBPC with analytical and ANN prediction

models respectively. The stator flux reference is set to the

nominal value |Ψs|nom = 1Wb and the torque setpoint is

fixed to 3.5 Nm (26.5% of Tnom), the motor speed during

the tests was 500 rpm. The results validate those obtained in

simulations. The control quality with the ANN is lower than

with the analytical model, the already mentioned ondulations

are clearly visible. Better control is achieved if the number of

hidden neurons would be increased.
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Figure 10: Predictive flux and torque control with an analytical prediction model (simulation)
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Figure 11: Predictive flux and torque control with an artificial neural network prediction model (1 and 2 neurons in the hidden layer for
flux and current estimation respectively) (simulation)
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Figure 12: Predictive flux and torque control with an analytical prediction model (experimental)
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Figure 13: Predictive flux and torque control with an artificial neural network prediction model (1 and 2 neurons in the hidden layer for
flux and current estimation respectively) (experimental)

V. CONCLUSIONS

In this paper several options for the formulation of the

cost function in the optimization step and for the prediction

model in the prediction step of FS-MBPC have been explored.

This was done with two specific applications: current control

of FC converters and torque control of induction motors.

It has been shown that quadratic and absolute-value cost

functions are interchangeable and that reducing the tracking

term on the capacitor voltage of an FCC is a favorable change.

Furthermore the feasibility to replace the analytical prediction

model for torque control with an ANN is demonstrated.

The practical feasibility to implement all these versions of FS-

MBPC in an FPGA has been shown.
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