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Abstract—This paper presents a new methodology to perform
parameterized sensitivity analysis based on the electromagnetic
method called Partial Element Equivalent Circuit. The proposed
methodology is based on the multivariate interpolation of the
matrices produced by the electromagnetic solver, which are
initially computed at a set of design space points. The proposed
interpolation scheme is able to compute the derivatives of the
electromagnetic matrices, which are needed to perform the
sensitivity analysis. Pertinent numerical results are shown to
prove the robustness of the proposed methodology.

1 INTRODUCTION

The design process of an electromagnetic (EM)
structure aims at obtaining the optimal values of the de-
sign variables for which the responses of the structure
(typically S-parameters in frequency domain or reflec-
tion, crosstalk and bit error rate (BER) in time-domain)
satisfy the design specifications. This goal is achieved
through EM simulations, whereby the desired values
of the design variables are usually determined using
optimization algorithms (optimizers). These algorithms
drive the EM simulators to obtain the responses and
their sensitivities in every optimization iteration. Tra-
ditional EM-based optimization techniques estimate
the responses sensitivities required by the optimizer
through a finite-difference approach (FDA). In this
approach, the EM simulator is repeatedly invoked for
perturbed values of the design variables [1].

Perturbation is a direct, but brute-force, method
of sensitivity analysis. It is not only computationally
expensive but often inaccurate, thus impractical when
the number of circuit parameters for optimization is
large. This is because for any circuit parameter g, a
perturbation ∆g has to be enforced and a new circuit
simulation needs to be run to get the sensitivity with
respect to g. Furthermore, it may be difficult to select a
value for ∆g to obtain accurate results. If ∆g is set too
large, perturbation itself is inaccurate. If ∆g is set too
small, extremely high accurate simulations are required
to exactly highlight the response difference between g
and g +∆g [2].

This work focuses on a new methodology to perform
a parameterized sensitivity analysis based on the Partial
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Element Equivalent Circuit (PEEC) [3]. The design
parameters involved can be either layout or substrate
features of the system under analysis. This method is
able to provide sensitivity information over the entire
design space and not only around one operative point.
This leads to a parameterized state-space model able
to perform sensitivity analysis.

The next section briefly reviews the PEEC method.
Section 3 introduces the new method of computing
sensitivity information over the entire design space, and
not only around one operating point. Finally, pertinent
numerical results, shown in Section 4, validate the
proposed technique.

2 PEEC METHOD

The PEEC method [4], [5], [6] is an EM technique,
which is able to describe a circuit layout in terms of the
capacitive and inductive interactions between the mesh-
cells, and leads directly to a SPICE-compatible model.
Nonlinear circuit devices such as drivers and receivers
can be connected to PEEC circuits and simulated using
a time domain circuit simulator (e.g. SPICE [7]).

In the standard approach, volumes and surfaces of
conductors and dielectrics are discretized into hexa-
hedra and patches respectively, that representing ele-
mentary regions [8] over which the current and charge
densities are expanded into a series of basis functions.
The Galerkin’s testing technique is used to transform
the Electric Field Integral Equation (EFIE) into an
equivalent circuit. The circuit equations resulting by
enforcing Kirchhoff’s current and voltage laws to
the PEEC circuit, using the modified nodal analysis
(MNA) [9], read:{

C(g) ẋ(t, g) = −G(g)x(t, g) +B(g) ip(t, g)
vp(t, g) = LT(g)x(t, g)

(1)
where vp(t, g) is the port voltage vector, ip(t, g) is
the port current vector, C(g), G(g), B(g), L(g) are
the PEEC matrices, while g = [g1, g2, . . . , gN ] is the
vector of the design parameters of interest.
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Equation (1) represents the system in an impedance-
based form that can be recast in the frequency domain
as:

Vp(s, g) = Z(g) Ip(s, g) (2)

where:

Z(g) = LT(g) (sC(g) +G(g))
−1

B(g) (3)

The sensitivity analysis of (1) can be performed with
respect to g. The next section describes this in more
detail.

3 PARAMETRIC SENSITIVITY

When the perturbative approach is used, two EM
simulations are required in order to obtain the sensi-
tivity with respect to a design parameter for each point
of the design space, and this leads to an inefficient
use of the computational resources. In what follows, a
new methodology to perform parameterized sensitivity
analysis based on the PEEC method is discussed. For
easy of notation, we discuss the parameterized sensi-
tivity analysis with respect to one design parameter g.
The general multivariate case can be easily derived.
We derive (1) with respect the parameter of interest g,
yelding a new state-space system, and combining the
result with the original state-space (1) as follows:[

C 0

Ĉ C

] [
ẋ(t)̂̇x(t)

]
= −

[
G 0

Ĝ G

] [
x(t)
x̂(t)

]
+
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B 0

B̂ B

] [
ip(t)

îp(t)

]
(4a)[
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]
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0 L
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]
(4b)

where the hat notation f̂ denotes the derivative of the
function f with respect to g. From (4) it is also possible
to derive an impedance-based form:[

Vp(s)

V̂p(s)

]
=

[
Z 0

Ẑ Z

] [
Ip(s)

Îp(s)

]
(5)

where:

Ẑ = L̂T (sC+G)
−1

B + LT (sC+G)
−1

B̂

− LT (sC+G)
−1

(
sĈ+ Ĝ

)
(sC+G)

−1
B (6)

Equations (4) and (5) denote the time and frequency
domain sensitivity, which are to be properly integrated
with termination conditions. Those equations involve
the derivative of the PEEC matrices Ĉ, Ĝ, B̂ and
L̂. In the next section, we will demonstrate how to
build a multivariate interpolation model able to shape
the PEEC matrices and corresponding derivatives as
functions of the design parameters.

3.1 Parameterized PEEC matrices and corre-
sponding derivatives

The basic idea is to compute the PEEC matrices
for a set of design space points, and then to build
corresponding parameterized models by means of in-
terpolation schemes, starting from multivariate data
samples {gk,C(gk),G(gk),B(gk),L(gk)}

Ktot

k=1 [10].
The multivariate cubic spline interpolation method [11]
is well-known for its stable and smooth characteristics.
The computed models are continuous in the first and
second order derivatives, allowing to compute the cor-
responding derivatives of the electromagnetic matrices
in (4).

Two data grids are used in the modeling process:
an estimation grid and a validation grid. The first one
is utilized to build the parameterized models of the
PEEC matrices, which lead to a parameterized model
of the matrices Z and Ẑ. The second grid is utilized
to assess the interpolation capability of these parame-
terized models to describe the system under study in
points of the design space previously not used for the
construction of the models of the PEEC matrices. To
clarify the use of these two data grids, we show in
Fig. 1 a possible estimation and validation data grid in
the case of two design parameters g = (g(1), g(2)). The
initial set of PEEC matrices (red crosses in Fig. 1) is
used to build the multivariate models by interpolation.
The other points (blue circles in Fig. 1) are employed
as validation points, instead of being used in models
generation.
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Figure 1. Example of an estimation and validation design space
grid.

4 NUMERICAL EXAMPLE

The proposed approach is applied to the spiral induc-
tor shown in Fig. 2. The dimensions are l1 = 0.8 mm
(length of first edge), l2 = 0.96 mm (length of second
edge), w = 0.10 mm (conductor width), t = 0.05 mm



Figure 2. Spiral inductor.
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Figure 3. Magnitude spectrum of Z11 for s = 0.14 mm (validation
point).

(thickness of conductor), n = 32 (number of edges).
A parameterized model has been built as a function of
the spacing between two successive turns of the spiral
(g = s), varying within the interval [0.10− 0.50] mm.
Six points are used to build the model, while five point
are used as validation points. By way of example, the
magnitude of Z11 and its derivative are shown in Figs.
3 and 4. Those coefficients have been evaluated for
the value of s = 0.14 mm (validation point). Next,
an impulsive voltage source with an internal resistance
RT = 50 Ω, voltage amplitude equal to 1 V, width of
the pulse equal to 5 ns and rise and fall times equal
to 2 ns is applied to the spiral. This is equivalent to

substituting
[
ip(t) îp(t)

]T
in (4) by:

[
ip(t)

îp(t)

]
=

[
1/RT 0
0 1/RT

]([
vs(t)
0

]
−

[
vp(t)
v̂p(t)

])
(7)

The port voltage sensitivity, obtained for the five
validation points, is shown in Fig. 5 and compared with
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Figure 4. Magnitude spectrum of Ẑ11 for s = 0.14 mm (validation
point).

those results obtained using the perturbative approach:

v̂p(t) =
vp(t, g +∆g)− vp(t, g)

∆g
(8)

The agreement is excellent and demonstrates the accu-
racy of the proposed methodology.
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Figure 5. Time domain voltage sensitivity.

5 CONCLUSIONS

This paper has presented a novel algorithm for
parameterized time domain sensitivity analysis, which
is based on the combination of the PEEC method and
suitable interpolation schemes. The main advantage of
the proposed method is that it does not require any
perturbative approach and it is able to fully cover
the entire design space and not only one operating
point. This significantly decreases the computational
resources required to carry out a parameterized sensi-
tivity analysis and leads to a more robust and versatile



approach. A numerical example was provided, which
demonstrates the accuracy and modeling capability of
the proposed method.
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