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We present CAPHE, an optical circuit modeling tool that can beused both in frequency
and in time domain. The tool is based on the definition of a node, which can have both
an instantaneous input-output relation, as well as different state variables (such as tem-
perature, carrier density...) and differential equationsfor these states. Furthermore, each
node has access to its input at all previous timesteps, allowing to create delay lines or
digital filters. A node can contain sub-nodes, allowing to create hierarchical networks.
This tool is useful in numerous applications: frequency-domain analysis of optical ring
filters, time-domain analysis of optical amplifiers, microdisks, nonlinear resonators...

Introduction
There are a lot of methods for modeling optical components, such as Finite Difference
Time Domain (FDTD) (e.g. MEEP [1, 2]), eigenmode expansion,Time Domain Trav-
eling Wave (TDTW) [3], Coupled Mode Theory (CMT), the Modified Nodal Analysis
(MNA) (see e.g. OptiSPICE [4])... The major difference between these tools is the level
of physical detail they contain. FDTD, for example, is directly based on Maxwell’s equa-
tions and therefore computationally very expensive. CMT, onthe other hand, is an ap-
proximate description, but extremely fast: one only needs afew variables to describe the
whole system.
In this paper, we present a tool that is capable of modeling systems both in time and in
frequency domain. In the time domain it is based on CMT. It is proven that for certain
coupled resonators, CMT is very accurate compared to FDTD [5], so our framework can
model these systems with reasonable accuracy and within reasonable time. Also, using
the frequency domain techniques, we can eliminate passive linear components before
the time-domain simulation begins, again decreasing the simulation time. Furthermore,
each component can be represented in a natural way using variables like optical field,
temperature, carrier density... without needing to be mapped on to voltage or current such
as in the MNA approach.
Our tool, named CAPHE [6] can also be used to simulate novel computational systems
such as photonic reservoirs [7]. It is written in C++ for optimal performance, with a
Python front-end for ease of use and interfacing to a large collection of scientific libraries.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55690355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In the next section we define a node according to the framework. After that we show how
an optical signal is represented, and we explain the rationale behind the elimination of
linear components. Finally we show two examples, one in frequency domain and one in
time domain.

Node model
A node consists ofN ports, see Fig. 1. A linear instantaneous transmission between
port sin,i andsout, j is defined through the scatter matrixSi j . Two optional time-domain
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Figure 1: A node hasN input/outputs and can be linear or nonlinear. See text for details.

descriptions can be added to enrich this component (see Fig.1, bottom): First, one can
add abuffer to store the inputssin,i at previous timesteps. This can be used if one wishes
to model a delayed waveguide or a digital filter. Second, we can add internalstatesto
the node. This can be used to describe the rate equations of, e.g., a laser or the complex
amplitude of a resonator. We use a set of ordinary differential equations (ODE) to describe
the component in terms of its internal variables. There is norestriction on the form
of the equations, so highly nonlinear components can be easily modeled. With these
two additions, theoutput sout,i is now a sum of the linear part and a term describing the
nonlinear character of the component.

Representation of an optical signal
We represent time signals as complex amplitudess(t), modulating a carrier frequencyωc.
The actual input at each port is then

E(t) = s(t)ejωct +c.c. (1)

Representing the signal bys(t) rather than byE(t) is beneficial from a numerical point of
view, as we can now integrate overs(t) which varies much slower thanE(t). Obviously,
as the bandwidth of the input signal increases, we will need more samples per time unit
to correctly simulate the system.
Differential equations can be added to describe the evolution of some variables, e.g.,
temperature and free carriers in a laser as a function of timeand inputs.
As soon as a differential equation is added, or the output is dependent on previous inputs,
the component is not instantaneous anymore. We call these nodes memory-containing
(MC) nodes (Fig. 1, bottom), as opposed to the the memoryless (ML) nodes.



Scatter matrices
A scatter matrix is defined for each node (see Fig. 1), but alsofor each (sub)circuit. In a
circuit, this matrix describes the total transmission fromand to all ports in the network.
This matrix can become big if the number of components is large, and hence slow down
the time-domain simulation. For this reason we derived techniques to eliminate the ML
nodes. The resulting scatter matrix is then smaller. The elimination involves solving
sparse matrix systems, which can be done very efficiently using KLU [8].

Example 1 - CROW (Coupled Resonator Optical Waveguide)
In this first example, we show how to design a CROW, which is a sequence of optical
rings. By adjusting the coupling strengthsκi of the coupling sections, we can design
filters with a desired shape, such as a flat band filter with a certain wavelength range. The
target filter has a transmission which is flat over 1 nm (see Fig. 2(a)). Here we choose a
small network of only four rings for demonstration purposes.

Target

5 iterations

10 iterations

20 iterations

(a) Optimizing the filter

Target

variation 1

variation 2

(b) Process variations

Figure 2: CROW: Designing a flat-band filter by optimizing the coupling strengths (left).
With process variations, performance deteriorates (right).

To find a set ofκi, we use an evolutionary algorithm to optimize the coupling coeffi-
cientsκi for i ∈ [1,5]. Each simulation takes about 200ms. After 33 generations with a
population size of 14, we get a solution that is close to the desired function, see Fig. 2.
We can compensate for the process variations by changing therefractive index locally
using micro-heaters on top of the waveguides. Suppose the ring resonances due to process
variations can vary over 1 nm [9], then, after further calculations, this leads to a power
budget of approximately 3 mW to thermally tune the rings to match the filter.

Example 2 - Dynamics of coupled ring resonators in a feedback loop
In the second example we demonstrate the dynamics of a ring resonator. The microring
is represented by four dynamical variables: two complex amplitudes for the energy and
phase of the light travelling in the CW and CCW direction, the temperature, and the
amount of free carriers. This system contains a lot of different timescales: the temperature
time constant (approx. 100ns- 1µs), the free carier relaxation time (approx. 1-10ns), the
coupling between the ring and the bus waveguide (approx. 10-100ps) and the coupling
between the CW and CCW mode (can be faster than the nanoseconds timescale).
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(a) Self-pulsation in a single (all-pass) microring
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(b) Dynamics of a system with three (all-pass)
microrings coupled with a feedback loop

Figure 3: Time-domain simulations

Given the different timescales and the compact formulationof the basic equations, our
tool is very well suited to simulate this system. In Fig. 3(a)we show how different fixed
input powers can trigger the experimentally observed self-pulsation in an all-pass filter.
In Fig. 3(b) we investigate a system of three coupled self-pulsating microrings with an
external feedback loop.
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